ack/lang/cem/cemcom.ansi/declarator.c

137 lines
3.1 KiB
C
Raw Permalink Normal View History

1989-02-07 11:04:05 +00:00
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
1994-06-27 08:03:14 +00:00
/* $Id$ */
1989-02-07 11:04:05 +00:00
/* D E C L A R A T O R M A N I P U L A T I O N */
#include "parameters.h"
#include "declarator.h"
1989-02-07 11:04:05 +00:00
#include <alloc.h>
#include <flt_arith.h>
1989-02-07 11:04:05 +00:00
#include "arith.h"
#include "type.h"
#include "proto.h"
#include "Lpars.h"
#include "declar.h"
#include "def.h"
#include "idf.h"
1989-02-07 11:04:05 +00:00
#include "label.h"
#include "expr.h"
#include "sizes.h"
#include "level.h"
#include "error.h"
1989-02-07 11:04:05 +00:00
extern char options[];
struct declarator null_declarator;
struct type *
declare_type(
struct type *tp,
struct declarator *dc)
1989-02-07 11:04:05 +00:00
{
/* Applies the decl_unary list starting at dc->dc_decl_unary
to the type tp and returns the result.
Functions that are declared within a parameter type list
are purely prototypes. Simply add the type list to the
function node.
*/
register struct decl_unary *du = dc->dc_decl_unary;
while (du) {
tp = construct_type(du->du_fund, tp, du->du_typequal,
du->du_count, du->du_proto);
du = du->next;
}
return tp;
}
void add_decl_unary(register struct declarator *dc, int fund, int qual, arith count, struct formal *fm, struct proto *pl)
1989-02-07 11:04:05 +00:00
{
/* A decl_unary describing a constructor with fundamental
type fund and with size count is inserted in front of the
declarator dc.
*/
register struct decl_unary *new = new_decl_unary();
new->next = dc->dc_decl_unary;
new->du_fund = fund;
new->du_count = count;
new->du_typequal = qual;
new->du_proto = pl;
if (fm) {
if (dc->dc_decl_unary) {
/* parameters only allowed at first decl_unary */
error("formal parameters list discarded");
}
else {
/* register the proto */
dc->dc_formal = fm;
}
}
dc->dc_decl_unary = new;
}
void remove_declarator(struct declarator *dc)
1989-02-07 11:04:05 +00:00
{
/* The decl_unary list starting at dc->dc_decl_unary is
removed.
*/
register struct decl_unary *du = dc->dc_decl_unary;
while (du) {
struct decl_unary *old_du = du;
du = du->next;
free_decl_unary(old_du);
}
}
void reject_params(register struct declarator *dc)
1989-02-07 11:04:05 +00:00
{
/* The declarator is checked to have no parameters, if it
1990-09-12 16:36:16 +00:00
is an old-style function. If it is a new-style function,
the identifiers are removed. The function is not called in
case of a function definition.
1989-02-07 11:04:05 +00:00
*/
1990-09-12 16:36:16 +00:00
register struct decl_unary *du = dc->dc_decl_unary;
1991-02-27 13:48:54 +00:00
int err_given = 0;
1990-09-12 16:36:16 +00:00
1989-02-07 11:04:05 +00:00
if (dc->dc_formal) {
error("non_empty formal parameter pack");
free_formals(dc->dc_formal);
dc->dc_formal = 0;
1991-02-27 13:48:54 +00:00
err_given = 1;
1989-02-07 11:04:05 +00:00
}
1990-09-12 16:36:16 +00:00
while (du) {
1991-02-27 13:48:54 +00:00
if (du->du_fund == FUNCTION) {
if (du->du_proto) remove_proto_idfs(du->du_proto);
else if (! err_given && ! options['o']) {
err_given = 1;
warning("old-fashioned function declaration");
}
}
1990-09-12 16:36:16 +00:00
du = du->next;
}
1989-02-07 11:04:05 +00:00
}
void check_array_subscript(register struct expr *expr)
1989-02-07 11:04:05 +00:00
{
Add long long literals like 123LL to ACK C. For now, a long long literal must have the 'LL' or 'll' suffix. A literal without 'LL' or 'll' acts as before: it may become unsigned long but not long long. (For targets where int and long have the same size, some literals change from unsigned int to unsigned long.) Type `arith` may be too narrow for long long values. Add a second type `writh` for wide arithmetic, and change some variables from arith to writh. This may cause bugs if I forget to use writh, or if a conversion from writh to arith overflows. I mark some conversions with (arith) or (writh) casts. - BigPars, SmallPars: Remove SPECIAL_ARITHMETICS. This feature would change arith to a different type, but can't work, because it would conflict with definitions of arith in both <em_arith.h> and <flt_arith.h>. - LLlex.c: Understand 'LL' or 'll' suffix. Cut size of constant when it overflows writh, not only when it overflows the target machine's types. (This cut might not be necessary, because we might cut it again later.) When picking signed long or unsigned long, check the target's long type, not the compiler's arith type; the old check for `val >= 0` was broken where sizeof(arith) > 4. - LLlex.h: Change struct token's tok_ival to writh, so it can hold a long long literal. - arith.c: Adjust to VL_VALUE being writh. Don't convert between float and integer at compile-time if the integer might be too wide for <flt_arith.h>. Add writh2str(), because writh might be too wide for long2str(). - arith.h: Remove SPECIAL_ARITHMETICS. Declare full_mask[] here, not in several *.c files. Declare writh2str(). - ch3.c, ch3bin.c, ch3mon.c, declarator.c, statement.g: Remove obsolete casts. Adjust to VL_VALUE being writh. - conversion.c, stab.c: Don't declare full_mask[]. - cstoper.c: Use writh for constant operations on VL_VALUE, and for full_mask[]. - declar., field.c, ival.g: Add casts. - dumpidf.c: Need to #include "parameters.h" before checking DEBUG. Use writh2str, because "%ld" might not work. - eval.c, eval.h: Add casts. Use writh when writing a wide constant in EM. - expr.c: Add and remove casts. In fill_int_expr(), make expression from long long literal. In chk_cst_expr(), allow long long as constant expression, so the compiler may accept `case 123LL:` in a switch statement. - expr.str: Change struct value's vl_value and struct expr's VL_VALUE to writh, so an expression may have a long long value at compile time. - statement.g: Remove obsolete casts. - switch.c, switch.str: Use writh in case entries for switch statements, so `switch (ll) {...}` with long long ll works. - tokenname.c: Add ULNGLNG so LLlex.c can use it for literals.
2019-09-05 02:14:38 +00:00
writh size = expr->VL_VALUE;
1989-02-07 11:04:05 +00:00
if (size < 0) {
error("array size is negative");
Add long long literals like 123LL to ACK C. For now, a long long literal must have the 'LL' or 'll' suffix. A literal without 'LL' or 'll' acts as before: it may become unsigned long but not long long. (For targets where int and long have the same size, some literals change from unsigned int to unsigned long.) Type `arith` may be too narrow for long long values. Add a second type `writh` for wide arithmetic, and change some variables from arith to writh. This may cause bugs if I forget to use writh, or if a conversion from writh to arith overflows. I mark some conversions with (arith) or (writh) casts. - BigPars, SmallPars: Remove SPECIAL_ARITHMETICS. This feature would change arith to a different type, but can't work, because it would conflict with definitions of arith in both <em_arith.h> and <flt_arith.h>. - LLlex.c: Understand 'LL' or 'll' suffix. Cut size of constant when it overflows writh, not only when it overflows the target machine's types. (This cut might not be necessary, because we might cut it again later.) When picking signed long or unsigned long, check the target's long type, not the compiler's arith type; the old check for `val >= 0` was broken where sizeof(arith) > 4. - LLlex.h: Change struct token's tok_ival to writh, so it can hold a long long literal. - arith.c: Adjust to VL_VALUE being writh. Don't convert between float and integer at compile-time if the integer might be too wide for <flt_arith.h>. Add writh2str(), because writh might be too wide for long2str(). - arith.h: Remove SPECIAL_ARITHMETICS. Declare full_mask[] here, not in several *.c files. Declare writh2str(). - ch3.c, ch3bin.c, ch3mon.c, declarator.c, statement.g: Remove obsolete casts. Adjust to VL_VALUE being writh. - conversion.c, stab.c: Don't declare full_mask[]. - cstoper.c: Use writh for constant operations on VL_VALUE, and for full_mask[]. - declar., field.c, ival.g: Add casts. - dumpidf.c: Need to #include "parameters.h" before checking DEBUG. Use writh2str, because "%ld" might not work. - eval.c, eval.h: Add casts. Use writh when writing a wide constant in EM. - expr.c: Add and remove casts. In fill_int_expr(), make expression from long long literal. In chk_cst_expr(), allow long long as constant expression, so the compiler may accept `case 123LL:` in a switch statement. - expr.str: Change struct value's vl_value and struct expr's VL_VALUE to writh, so an expression may have a long long value at compile time. - statement.g: Remove obsolete casts. - switch.c, switch.str: Use writh in case entries for switch statements, so `switch (ll) {...}` with long long ll works. - tokenname.c: Add ULNGLNG so LLlex.c can use it for literals.
2019-09-05 02:14:38 +00:00
expr->VL_VALUE = 1;
1989-02-07 11:04:05 +00:00
}
else
if (size == 0) {
strict("array size is 0");
1989-02-07 11:04:05 +00:00
}
else
if (size & ~max_unsigned) { /* absolutely ridiculous */
expr_error(expr, "overflow in array size");
Add long long literals like 123LL to ACK C. For now, a long long literal must have the 'LL' or 'll' suffix. A literal without 'LL' or 'll' acts as before: it may become unsigned long but not long long. (For targets where int and long have the same size, some literals change from unsigned int to unsigned long.) Type `arith` may be too narrow for long long values. Add a second type `writh` for wide arithmetic, and change some variables from arith to writh. This may cause bugs if I forget to use writh, or if a conversion from writh to arith overflows. I mark some conversions with (arith) or (writh) casts. - BigPars, SmallPars: Remove SPECIAL_ARITHMETICS. This feature would change arith to a different type, but can't work, because it would conflict with definitions of arith in both <em_arith.h> and <flt_arith.h>. - LLlex.c: Understand 'LL' or 'll' suffix. Cut size of constant when it overflows writh, not only when it overflows the target machine's types. (This cut might not be necessary, because we might cut it again later.) When picking signed long or unsigned long, check the target's long type, not the compiler's arith type; the old check for `val >= 0` was broken where sizeof(arith) > 4. - LLlex.h: Change struct token's tok_ival to writh, so it can hold a long long literal. - arith.c: Adjust to VL_VALUE being writh. Don't convert between float and integer at compile-time if the integer might be too wide for <flt_arith.h>. Add writh2str(), because writh might be too wide for long2str(). - arith.h: Remove SPECIAL_ARITHMETICS. Declare full_mask[] here, not in several *.c files. Declare writh2str(). - ch3.c, ch3bin.c, ch3mon.c, declarator.c, statement.g: Remove obsolete casts. Adjust to VL_VALUE being writh. - conversion.c, stab.c: Don't declare full_mask[]. - cstoper.c: Use writh for constant operations on VL_VALUE, and for full_mask[]. - declar., field.c, ival.g: Add casts. - dumpidf.c: Need to #include "parameters.h" before checking DEBUG. Use writh2str, because "%ld" might not work. - eval.c, eval.h: Add casts. Use writh when writing a wide constant in EM. - expr.c: Add and remove casts. In fill_int_expr(), make expression from long long literal. In chk_cst_expr(), allow long long as constant expression, so the compiler may accept `case 123LL:` in a switch statement. - expr.str: Change struct value's vl_value and struct expr's VL_VALUE to writh, so an expression may have a long long value at compile time. - statement.g: Remove obsolete casts. - switch.c, switch.str: Use writh in case entries for switch statements, so `switch (ll) {...}` with long long ll works. - tokenname.c: Add ULNGLNG so LLlex.c can use it for literals.
2019-09-05 02:14:38 +00:00
expr->VL_VALUE = 1;
1989-02-07 11:04:05 +00:00
}
}