ack/lang/cem/libcc/math/sin.c

116 lines
2.2 KiB
C
Raw Normal View History

1988-07-22 16:53:29 +00:00
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <math.h>
#include <errno.h>
extern int errno;
static double
sinus(x, quadrant)
double x;
{
/* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] */
/* Hart & Cheney # 3374 */
static double p[6] = {
0.4857791909822798473837058825e+10,
-0.1808816670894030772075877725e+10,
0.1724314784722489597789244188e+09,
-0.6351331748520454245913645971e+07,
0.1002087631419532326179108883e+06,
-0.5830988897678192576148973679e+03
};
static double q[6] = {
0.3092566379840468199410228418e+10,
0.1202384907680254190870913060e+09,
0.2321427631602460953669856368e+07,
0.2848331644063908832127222835e+05,
0.2287602116741682420054505174e+03,
0.1000000000000000000000000000e+01
};
double xsqr;
int t;
if (x < 0) {
quadrant += 2;
x = -x;
}
if (M_PI_2 - x == M_PI_2) {
switch(quadrant) {
case 0:
case 2:
return 0.0;
case 1:
return 1.0;
case 3:
return -1.0;
}
}
if (x >= M_2PI) {
if (x <= 0x7fffffff) {
/* Use extended precision to calculate reduced argument.
Split 2pi in 2 parts a1 and a2, of which the first only
uses some bits of the mantissa, so that n * a1 is
exactly representable, where n is the integer part of
x/pi.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
*/
#define A1 6.2822265625
#define A2 0.00095874467958647692528676655900576
double n = (long) (x / M_2PI);
double x1 = (long) x;
double x2 = x - x1;
x = x1 - n * A1;
x += x2;
x -= n * A2;
#undef A1
#undef A2
}
else {
extern double modf();
double dummy;
x = modf(x/M_2PI, &dummy) * M_2PI;
}
}
x /= M_PI_2;
t = x;
x -= t;
quadrant = (quadrant + (int)(t % 4)) % 4;
if (quadrant & 01) {
x = 1 - x;
}
if (quadrant > 1) {
x = -x;
}
xsqr = x * x;
x = x * POLYNOM5(xsqr, p) / POLYNOM5(xsqr, q);
return x;
}
double
sin(x)
double x;
{
return sinus(x, 0);
}
double
cos(x)
double x;
{
if (x < 0) x = -x;
return sinus(x, 1);
}