ack/lang/pc/libpc/pc_math.h

43 lines
1.9 KiB
C
Raw Normal View History

1990-11-06 13:04:12 +00:00
/*
* localmath.h - This header is used by the mathematical library.
*/
1994-06-24 11:31:16 +00:00
/* $Id$ */
1990-11-06 13:04:12 +00:00
/* some constants (Hart & Cheney) */
#define M_PI 3.14159265358979323846264338327950288
#define M_2PI 6.28318530717958647692528676655900576
#define M_3PI_4 2.35619449019234492884698253745962716
#define M_PI_2 1.57079632679489661923132169163975144
#define M_3PI_8 1.17809724509617246442349126872981358
#define M_PI_4 0.78539816339744830961566084581987572
#define M_PI_8 0.39269908169872415480783042290993786
#define M_1_PI 0.31830988618379067153776752674502872
#define M_2_PI 0.63661977236758134307553505349005744
#define M_4_PI 1.27323954473516268615107010698011488
#define M_E 2.71828182845904523536028747135266250
#define M_LOG2E 1.44269504088896340735992468100189213
#define M_LOG10E 0.43429448190325182765112891891660508
#define M_LN2 0.69314718055994530941723212145817657
#define M_LN10 2.30258509299404568401799145468436421
#define M_SQRT2 1.41421356237309504880168872420969808
#define M_1_SQRT2 0.70710678118654752440084436210484904
#define M_EULER 0.57721566490153286060651209008240243
/* macros for constructing polynomials */
#define POLYNOM1(x, a) ((a)[1]*(x)+(a)[0])
#define POLYNOM2(x, a) (POLYNOM1((x),(a)+1)*(x)+(a)[0])
#define POLYNOM3(x, a) (POLYNOM2((x),(a)+1)*(x)+(a)[0])
#define POLYNOM4(x, a) (POLYNOM3((x),(a)+1)*(x)+(a)[0])
#define POLYNOM5(x, a) (POLYNOM4((x),(a)+1)*(x)+(a)[0])
#define POLYNOM6(x, a) (POLYNOM5((x),(a)+1)*(x)+(a)[0])
#define POLYNOM7(x, a) (POLYNOM6((x),(a)+1)*(x)+(a)[0])
#define POLYNOM8(x, a) (POLYNOM7((x),(a)+1)*(x)+(a)[0])
#define POLYNOM9(x, a) (POLYNOM8((x),(a)+1)*(x)+(a)[0])
#define POLYNOM10(x, a) (POLYNOM9((x),(a)+1)*(x)+(a)[0])
#define POLYNOM11(x, a) (POLYNOM10((x),(a)+1)*(x)+(a)[0])
#define POLYNOM12(x, a) (POLYNOM11((x),(a)+1)*(x)+(a)[0])
#define POLYNOM13(x, a) (POLYNOM12((x),(a)+1)*(x)+(a)[0])
#define M_LN_MAX_D (M_LN2 * DBL_MAX_EXP)
#define M_LN_MIN_D (M_LN2 * (DBL_MIN_EXP - 1))