933 lines
25 KiB
C
933 lines
25 KiB
C
|
/* tblcmp - table compression routines */
|
||
|
|
||
|
/*-
|
||
|
* Copyright (c) 1990 The Regents of the University of California.
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This code is derived from software contributed to Berkeley by
|
||
|
* Vern Paxson.
|
||
|
*
|
||
|
* The United States Government has rights in this work pursuant
|
||
|
* to contract no. DE-AC03-76SF00098 between the United States
|
||
|
* Department of Energy and the University of California.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms are permitted provided
|
||
|
* that: (1) source distributions retain this entire copyright notice and
|
||
|
* comment, and (2) distributions including binaries display the following
|
||
|
* acknowledgement: ``This product includes software developed by the
|
||
|
* University of California, Berkeley and its contributors'' in the
|
||
|
* documentation or other materials provided with the distribution and in
|
||
|
* all advertising materials mentioning features or use of this software.
|
||
|
* Neither the name of the University nor the names of its contributors may
|
||
|
* be used to endorse or promote products derived from this software without
|
||
|
* specific prior written permission.
|
||
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
||
|
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
*/
|
||
|
|
||
|
#ifndef lint
|
||
|
static char rcsid[] =
|
||
|
"@(#) $Header$ (LBL)";
|
||
|
#endif
|
||
|
|
||
|
#include "flexdef.h"
|
||
|
|
||
|
|
||
|
/* declarations for functions that have forward references */
|
||
|
|
||
|
void mkentry PROTO((register int*, int, int, int, int));
|
||
|
void mkprot PROTO((int[], int, int));
|
||
|
void mktemplate PROTO((int[], int, int));
|
||
|
void mv2front PROTO((int));
|
||
|
int tbldiff PROTO((int[], int, int[]));
|
||
|
|
||
|
|
||
|
/* bldtbl - build table entries for dfa state
|
||
|
*
|
||
|
* synopsis
|
||
|
* int state[numecs], statenum, totaltrans, comstate, comfreq;
|
||
|
* bldtbl( state, statenum, totaltrans, comstate, comfreq );
|
||
|
*
|
||
|
* State is the statenum'th dfa state. It is indexed by equivalence class and
|
||
|
* gives the number of the state to enter for a given equivalence class.
|
||
|
* totaltrans is the total number of transitions out of the state. Comstate
|
||
|
* is that state which is the destination of the most transitions out of State.
|
||
|
* Comfreq is how many transitions there are out of State to Comstate.
|
||
|
*
|
||
|
* A note on terminology:
|
||
|
* "protos" are transition tables which have a high probability of
|
||
|
* either being redundant (a state processed later will have an identical
|
||
|
* transition table) or nearly redundant (a state processed later will have
|
||
|
* many of the same out-transitions). A "most recently used" queue of
|
||
|
* protos is kept around with the hope that most states will find a proto
|
||
|
* which is similar enough to be usable, and therefore compacting the
|
||
|
* output tables.
|
||
|
* "templates" are a special type of proto. If a transition table is
|
||
|
* homogeneous or nearly homogeneous (all transitions go to the same
|
||
|
* destination) then the odds are good that future states will also go
|
||
|
* to the same destination state on basically the same character set.
|
||
|
* These homogeneous states are so common when dealing with large rule
|
||
|
* sets that they merit special attention. If the transition table were
|
||
|
* simply made into a proto, then (typically) each subsequent, similar
|
||
|
* state will differ from the proto for two out-transitions. One of these
|
||
|
* out-transitions will be that character on which the proto does not go
|
||
|
* to the common destination, and one will be that character on which the
|
||
|
* state does not go to the common destination. Templates, on the other
|
||
|
* hand, go to the common state on EVERY transition character, and therefore
|
||
|
* cost only one difference.
|
||
|
*/
|
||
|
|
||
|
void bldtbl( state, statenum, totaltrans, comstate, comfreq )
|
||
|
int state[], statenum, totaltrans, comstate, comfreq;
|
||
|
|
||
|
{
|
||
|
int extptr, extrct[2][CSIZE + 1];
|
||
|
int mindiff, minprot, i, d;
|
||
|
int checkcom;
|
||
|
|
||
|
/* If extptr is 0 then the first array of extrct holds the result of the
|
||
|
* "best difference" to date, which is those transitions which occur in
|
||
|
* "state" but not in the proto which, to date, has the fewest differences
|
||
|
* between itself and "state". If extptr is 1 then the second array of
|
||
|
* extrct hold the best difference. The two arrays are toggled
|
||
|
* between so that the best difference to date can be kept around and
|
||
|
* also a difference just created by checking against a candidate "best"
|
||
|
* proto.
|
||
|
*/
|
||
|
|
||
|
extptr = 0;
|
||
|
|
||
|
/* if the state has too few out-transitions, don't bother trying to
|
||
|
* compact its tables
|
||
|
*/
|
||
|
|
||
|
if ( (totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE) )
|
||
|
mkentry( state, numecs, statenum, JAMSTATE, totaltrans );
|
||
|
|
||
|
else
|
||
|
{
|
||
|
/* checkcom is true if we should only check "state" against
|
||
|
* protos which have the same "comstate" value
|
||
|
*/
|
||
|
|
||
|
checkcom = comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
|
||
|
|
||
|
minprot = firstprot;
|
||
|
mindiff = totaltrans;
|
||
|
|
||
|
if ( checkcom )
|
||
|
{
|
||
|
/* find first proto which has the same "comstate" */
|
||
|
for ( i = firstprot; i != NIL; i = protnext[i] )
|
||
|
if ( protcomst[i] == comstate )
|
||
|
{
|
||
|
minprot = i;
|
||
|
mindiff = tbldiff( state, minprot, extrct[extptr] );
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
/* since we've decided that the most common destination out
|
||
|
* of "state" does not occur with a high enough frequency,
|
||
|
* we set the "comstate" to zero, assuring that if this state
|
||
|
* is entered into the proto list, it will not be considered
|
||
|
* a template.
|
||
|
*/
|
||
|
comstate = 0;
|
||
|
|
||
|
if ( firstprot != NIL )
|
||
|
{
|
||
|
minprot = firstprot;
|
||
|
mindiff = tbldiff( state, minprot, extrct[extptr] );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* we now have the first interesting proto in "minprot". If
|
||
|
* it matches within the tolerances set for the first proto,
|
||
|
* we don't want to bother scanning the rest of the proto list
|
||
|
* to see if we have any other reasonable matches.
|
||
|
*/
|
||
|
|
||
|
if ( mindiff * 100 > totaltrans * FIRST_MATCH_DIFF_PERCENTAGE )
|
||
|
{ /* not a good enough match. Scan the rest of the protos */
|
||
|
for ( i = minprot; i != NIL; i = protnext[i] )
|
||
|
{
|
||
|
d = tbldiff( state, i, extrct[1 - extptr] );
|
||
|
if ( d < mindiff )
|
||
|
{
|
||
|
extptr = 1 - extptr;
|
||
|
mindiff = d;
|
||
|
minprot = i;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* check if the proto we've decided on as our best bet is close
|
||
|
* enough to the state we want to match to be usable
|
||
|
*/
|
||
|
|
||
|
if ( mindiff * 100 > totaltrans * ACCEPTABLE_DIFF_PERCENTAGE )
|
||
|
{
|
||
|
/* no good. If the state is homogeneous enough, we make a
|
||
|
* template out of it. Otherwise, we make a proto.
|
||
|
*/
|
||
|
|
||
|
if ( comfreq * 100 >= totaltrans * TEMPLATE_SAME_PERCENTAGE )
|
||
|
mktemplate( state, statenum, comstate );
|
||
|
|
||
|
else
|
||
|
{
|
||
|
mkprot( state, statenum, comstate );
|
||
|
mkentry( state, numecs, statenum, JAMSTATE, totaltrans );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{ /* use the proto */
|
||
|
mkentry( extrct[extptr], numecs, statenum,
|
||
|
prottbl[minprot], mindiff );
|
||
|
|
||
|
/* if this state was sufficiently different from the proto
|
||
|
* we built it from, make it, too, a proto
|
||
|
*/
|
||
|
|
||
|
if ( mindiff * 100 >= totaltrans * NEW_PROTO_DIFF_PERCENTAGE )
|
||
|
mkprot( state, statenum, comstate );
|
||
|
|
||
|
/* since mkprot added a new proto to the proto queue, it's possible
|
||
|
* that "minprot" is no longer on the proto queue (if it happened
|
||
|
* to have been the last entry, it would have been bumped off).
|
||
|
* If it's not there, then the new proto took its physical place
|
||
|
* (though logically the new proto is at the beginning of the
|
||
|
* queue), so in that case the following call will do nothing.
|
||
|
*/
|
||
|
|
||
|
mv2front( minprot );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* cmptmps - compress template table entries
|
||
|
*
|
||
|
* synopsis
|
||
|
* cmptmps();
|
||
|
*
|
||
|
* template tables are compressed by using the 'template equivalence
|
||
|
* classes', which are collections of transition character equivalence
|
||
|
* classes which always appear together in templates - really meta-equivalence
|
||
|
* classes. until this point, the tables for templates have been stored
|
||
|
* up at the top end of the nxt array; they will now be compressed and have
|
||
|
* table entries made for them.
|
||
|
*/
|
||
|
|
||
|
void cmptmps()
|
||
|
|
||
|
{
|
||
|
int tmpstorage[CSIZE + 1];
|
||
|
register int *tmp = tmpstorage, i, j;
|
||
|
int totaltrans, trans;
|
||
|
|
||
|
peakpairs = numtemps * numecs + tblend;
|
||
|
|
||
|
if ( usemecs )
|
||
|
{
|
||
|
/* create equivalence classes base on data gathered on template
|
||
|
* transitions
|
||
|
*/
|
||
|
|
||
|
nummecs = cre8ecs( tecfwd, tecbck, numecs );
|
||
|
}
|
||
|
|
||
|
else
|
||
|
nummecs = numecs;
|
||
|
|
||
|
if ( lastdfa + numtemps + 1 >= current_max_dfas )
|
||
|
increase_max_dfas();
|
||
|
|
||
|
/* loop through each template */
|
||
|
|
||
|
for ( i = 1; i <= numtemps; ++i )
|
||
|
{
|
||
|
totaltrans = 0; /* number of non-jam transitions out of this template */
|
||
|
|
||
|
for ( j = 1; j <= numecs; ++j )
|
||
|
{
|
||
|
trans = tnxt[numecs * i + j];
|
||
|
|
||
|
if ( usemecs )
|
||
|
{
|
||
|
/* the absolute value of tecbck is the meta-equivalence class
|
||
|
* of a given equivalence class, as set up by cre8ecs
|
||
|
*/
|
||
|
if ( tecbck[j] > 0 )
|
||
|
{
|
||
|
tmp[tecbck[j]] = trans;
|
||
|
|
||
|
if ( trans > 0 )
|
||
|
++totaltrans;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
tmp[j] = trans;
|
||
|
|
||
|
if ( trans > 0 )
|
||
|
++totaltrans;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* it is assumed (in a rather subtle way) in the skeleton that
|
||
|
* if we're using meta-equivalence classes, the def[] entry for
|
||
|
* all templates is the jam template, i.e., templates never default
|
||
|
* to other non-jam table entries (e.g., another template)
|
||
|
*/
|
||
|
|
||
|
/* leave room for the jam-state after the last real state */
|
||
|
mkentry( tmp, nummecs, lastdfa + i + 1, JAMSTATE, totaltrans );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef ACK_MOD
|
||
|
static void bzero(p, cnt)
|
||
|
register char *p;
|
||
|
register int cnt;
|
||
|
{
|
||
|
while (cnt-- > 0) *p++ = '\0';
|
||
|
}
|
||
|
#endif /* ACK_MOD */
|
||
|
|
||
|
/* expand_nxt_chk - expand the next check arrays */
|
||
|
|
||
|
void expand_nxt_chk()
|
||
|
|
||
|
{
|
||
|
register int old_max = current_max_xpairs;
|
||
|
|
||
|
current_max_xpairs += MAX_XPAIRS_INCREMENT;
|
||
|
|
||
|
++num_reallocs;
|
||
|
|
||
|
nxt = reallocate_integer_array( nxt, current_max_xpairs );
|
||
|
chk = reallocate_integer_array( chk, current_max_xpairs );
|
||
|
|
||
|
bzero( (char *) (chk + old_max),
|
||
|
MAX_XPAIRS_INCREMENT * sizeof( int ) / sizeof( char ) );
|
||
|
}
|
||
|
|
||
|
|
||
|
/* find_table_space - finds a space in the table for a state to be placed
|
||
|
*
|
||
|
* synopsis
|
||
|
* int *state, numtrans, block_start;
|
||
|
* int find_table_space();
|
||
|
*
|
||
|
* block_start = find_table_space( state, numtrans );
|
||
|
*
|
||
|
* State is the state to be added to the full speed transition table.
|
||
|
* Numtrans is the number of out-transitions for the state.
|
||
|
*
|
||
|
* find_table_space() returns the position of the start of the first block (in
|
||
|
* chk) able to accommodate the state
|
||
|
*
|
||
|
* In determining if a state will or will not fit, find_table_space() must take
|
||
|
* into account the fact that an end-of-buffer state will be added at [0],
|
||
|
* and an action number will be added in [-1].
|
||
|
*/
|
||
|
|
||
|
int find_table_space( state, numtrans )
|
||
|
int *state, numtrans;
|
||
|
|
||
|
{
|
||
|
/* firstfree is the position of the first possible occurrence of two
|
||
|
* consecutive unused records in the chk and nxt arrays
|
||
|
*/
|
||
|
register int i;
|
||
|
register int *state_ptr, *chk_ptr;
|
||
|
register int *ptr_to_last_entry_in_state;
|
||
|
|
||
|
/* if there are too many out-transitions, put the state at the end of
|
||
|
* nxt and chk
|
||
|
*/
|
||
|
if ( numtrans > MAX_XTIONS_FULL_INTERIOR_FIT )
|
||
|
{
|
||
|
/* if table is empty, return the first available spot in chk/nxt,
|
||
|
* which should be 1
|
||
|
*/
|
||
|
if ( tblend < 2 )
|
||
|
return ( 1 );
|
||
|
|
||
|
i = tblend - numecs; /* start searching for table space near the
|
||
|
* end of chk/nxt arrays
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
else
|
||
|
i = firstfree; /* start searching for table space from the
|
||
|
* beginning (skipping only the elements
|
||
|
* which will definitely not hold the new
|
||
|
* state)
|
||
|
*/
|
||
|
|
||
|
while ( 1 ) /* loops until a space is found */
|
||
|
{
|
||
|
if ( i + numecs > current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
|
||
|
/* loops until space for end-of-buffer and action number are found */
|
||
|
while ( 1 )
|
||
|
{
|
||
|
if ( chk[i - 1] == 0 ) /* check for action number space */
|
||
|
{
|
||
|
if ( chk[i] == 0 ) /* check for end-of-buffer space */
|
||
|
break;
|
||
|
|
||
|
else
|
||
|
i += 2; /* since i != 0, there is no use checking to
|
||
|
* see if (++i) - 1 == 0, because that's the
|
||
|
* same as i == 0, so we skip a space
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
else
|
||
|
++i;
|
||
|
|
||
|
if ( i + numecs > current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
}
|
||
|
|
||
|
/* if we started search from the beginning, store the new firstfree for
|
||
|
* the next call of find_table_space()
|
||
|
*/
|
||
|
if ( numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT )
|
||
|
firstfree = i + 1;
|
||
|
|
||
|
/* check to see if all elements in chk (and therefore nxt) that are
|
||
|
* needed for the new state have not yet been taken
|
||
|
*/
|
||
|
|
||
|
state_ptr = &state[1];
|
||
|
ptr_to_last_entry_in_state = &chk[i + numecs + 1];
|
||
|
|
||
|
for ( chk_ptr = &chk[i + 1]; chk_ptr != ptr_to_last_entry_in_state;
|
||
|
++chk_ptr )
|
||
|
if ( *(state_ptr++) != 0 && *chk_ptr != 0 )
|
||
|
break;
|
||
|
|
||
|
if ( chk_ptr == ptr_to_last_entry_in_state )
|
||
|
return ( i );
|
||
|
|
||
|
else
|
||
|
++i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* inittbl - initialize transition tables
|
||
|
*
|
||
|
* synopsis
|
||
|
* inittbl();
|
||
|
*
|
||
|
* Initializes "firstfree" to be one beyond the end of the table. Initializes
|
||
|
* all "chk" entries to be zero. Note that templates are built in their
|
||
|
* own tbase/tdef tables. They are shifted down to be contiguous
|
||
|
* with the non-template entries during table generation.
|
||
|
*/
|
||
|
void inittbl()
|
||
|
|
||
|
{
|
||
|
register int i;
|
||
|
|
||
|
bzero( (char *) chk, current_max_xpairs * sizeof( int ) / sizeof( char ) );
|
||
|
|
||
|
tblend = 0;
|
||
|
firstfree = tblend + 1;
|
||
|
numtemps = 0;
|
||
|
|
||
|
if ( usemecs )
|
||
|
{
|
||
|
/* set up doubly-linked meta-equivalence classes
|
||
|
* these are sets of equivalence classes which all have identical
|
||
|
* transitions out of TEMPLATES
|
||
|
*/
|
||
|
|
||
|
tecbck[1] = NIL;
|
||
|
|
||
|
for ( i = 2; i <= numecs; ++i )
|
||
|
{
|
||
|
tecbck[i] = i - 1;
|
||
|
tecfwd[i - 1] = i;
|
||
|
}
|
||
|
|
||
|
tecfwd[numecs] = NIL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* mkdeftbl - make the default, "jam" table entries
|
||
|
*
|
||
|
* synopsis
|
||
|
* mkdeftbl();
|
||
|
*/
|
||
|
|
||
|
void mkdeftbl()
|
||
|
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
jamstate = lastdfa + 1;
|
||
|
|
||
|
++tblend; /* room for transition on end-of-buffer character */
|
||
|
|
||
|
if ( tblend + numecs > current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
|
||
|
/* add in default end-of-buffer transition */
|
||
|
nxt[tblend] = end_of_buffer_state;
|
||
|
chk[tblend] = jamstate;
|
||
|
|
||
|
for ( i = 1; i <= numecs; ++i )
|
||
|
{
|
||
|
nxt[tblend + i] = 0;
|
||
|
chk[tblend + i] = jamstate;
|
||
|
}
|
||
|
|
||
|
jambase = tblend;
|
||
|
|
||
|
base[jamstate] = jambase;
|
||
|
def[jamstate] = 0;
|
||
|
|
||
|
tblend += numecs;
|
||
|
++numtemps;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* mkentry - create base/def and nxt/chk entries for transition array
|
||
|
*
|
||
|
* synopsis
|
||
|
* int state[numchars + 1], numchars, statenum, deflink, totaltrans;
|
||
|
* mkentry( state, numchars, statenum, deflink, totaltrans );
|
||
|
*
|
||
|
* "state" is a transition array "numchars" characters in size, "statenum"
|
||
|
* is the offset to be used into the base/def tables, and "deflink" is the
|
||
|
* entry to put in the "def" table entry. If "deflink" is equal to
|
||
|
* "JAMSTATE", then no attempt will be made to fit zero entries of "state"
|
||
|
* (i.e., jam entries) into the table. It is assumed that by linking to
|
||
|
* "JAMSTATE" they will be taken care of. In any case, entries in "state"
|
||
|
* marking transitions to "SAME_TRANS" are treated as though they will be
|
||
|
* taken care of by whereever "deflink" points. "totaltrans" is the total
|
||
|
* number of transitions out of the state. If it is below a certain threshold,
|
||
|
* the tables are searched for an interior spot that will accommodate the
|
||
|
* state array.
|
||
|
*/
|
||
|
|
||
|
void mkentry( state, numchars, statenum, deflink, totaltrans )
|
||
|
register int *state;
|
||
|
int numchars, statenum, deflink, totaltrans;
|
||
|
|
||
|
{
|
||
|
register int minec, maxec, i, baseaddr;
|
||
|
int tblbase, tbllast;
|
||
|
|
||
|
if ( totaltrans == 0 )
|
||
|
{ /* there are no out-transitions */
|
||
|
if ( deflink == JAMSTATE )
|
||
|
base[statenum] = JAMSTATE;
|
||
|
else
|
||
|
base[statenum] = 0;
|
||
|
|
||
|
def[statenum] = deflink;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for ( minec = 1; minec <= numchars; ++minec )
|
||
|
{
|
||
|
if ( state[minec] != SAME_TRANS )
|
||
|
if ( state[minec] != 0 || deflink != JAMSTATE )
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if ( totaltrans == 1 )
|
||
|
{
|
||
|
/* there's only one out-transition. Save it for later to fill
|
||
|
* in holes in the tables.
|
||
|
*/
|
||
|
stack1( statenum, minec, state[minec], deflink );
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for ( maxec = numchars; maxec > 0; --maxec )
|
||
|
{
|
||
|
if ( state[maxec] != SAME_TRANS )
|
||
|
if ( state[maxec] != 0 || deflink != JAMSTATE )
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Whether we try to fit the state table in the middle of the table
|
||
|
* entries we have already generated, or if we just take the state
|
||
|
* table at the end of the nxt/chk tables, we must make sure that we
|
||
|
* have a valid base address (i.e., non-negative). Note that not only are
|
||
|
* negative base addresses dangerous at run-time (because indexing the
|
||
|
* next array with one and a low-valued character might generate an
|
||
|
* array-out-of-bounds error message), but at compile-time negative
|
||
|
* base addresses denote TEMPLATES.
|
||
|
*/
|
||
|
|
||
|
/* find the first transition of state that we need to worry about. */
|
||
|
if ( totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE )
|
||
|
{ /* attempt to squeeze it into the middle of the tabls */
|
||
|
baseaddr = firstfree;
|
||
|
|
||
|
while ( baseaddr < minec )
|
||
|
{
|
||
|
/* using baseaddr would result in a negative base address below
|
||
|
* find the next free slot
|
||
|
*/
|
||
|
for ( ++baseaddr; chk[baseaddr] != 0; ++baseaddr )
|
||
|
;
|
||
|
}
|
||
|
|
||
|
if ( baseaddr + maxec - minec >= current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
|
||
|
for ( i = minec; i <= maxec; ++i )
|
||
|
if ( state[i] != SAME_TRANS )
|
||
|
if ( state[i] != 0 || deflink != JAMSTATE )
|
||
|
if ( chk[baseaddr + i - minec] != 0 )
|
||
|
{ /* baseaddr unsuitable - find another */
|
||
|
for ( ++baseaddr;
|
||
|
baseaddr < current_max_xpairs &&
|
||
|
chk[baseaddr] != 0;
|
||
|
++baseaddr )
|
||
|
;
|
||
|
|
||
|
if ( baseaddr + maxec - minec >= current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
|
||
|
/* reset the loop counter so we'll start all
|
||
|
* over again next time it's incremented
|
||
|
*/
|
||
|
|
||
|
i = minec - 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
else
|
||
|
{
|
||
|
/* ensure that the base address we eventually generate is
|
||
|
* non-negative
|
||
|
*/
|
||
|
baseaddr = max( tblend + 1, minec );
|
||
|
}
|
||
|
|
||
|
tblbase = baseaddr - minec;
|
||
|
tbllast = tblbase + maxec;
|
||
|
|
||
|
if ( tbllast >= current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
|
||
|
base[statenum] = tblbase;
|
||
|
def[statenum] = deflink;
|
||
|
|
||
|
for ( i = minec; i <= maxec; ++i )
|
||
|
if ( state[i] != SAME_TRANS )
|
||
|
if ( state[i] != 0 || deflink != JAMSTATE )
|
||
|
{
|
||
|
nxt[tblbase + i] = state[i];
|
||
|
chk[tblbase + i] = statenum;
|
||
|
}
|
||
|
|
||
|
if ( baseaddr == firstfree )
|
||
|
/* find next free slot in tables */
|
||
|
for ( ++firstfree; chk[firstfree] != 0; ++firstfree )
|
||
|
;
|
||
|
|
||
|
tblend = max( tblend, tbllast );
|
||
|
}
|
||
|
|
||
|
|
||
|
/* mk1tbl - create table entries for a state (or state fragment) which
|
||
|
* has only one out-transition
|
||
|
*
|
||
|
* synopsis
|
||
|
* int state, sym, onenxt, onedef;
|
||
|
* mk1tbl( state, sym, onenxt, onedef );
|
||
|
*/
|
||
|
|
||
|
void mk1tbl( state, sym, onenxt, onedef )
|
||
|
int state, sym, onenxt, onedef;
|
||
|
|
||
|
{
|
||
|
if ( firstfree < sym )
|
||
|
firstfree = sym;
|
||
|
|
||
|
while ( chk[firstfree] != 0 )
|
||
|
if ( ++firstfree >= current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
|
||
|
base[state] = firstfree - sym;
|
||
|
def[state] = onedef;
|
||
|
chk[firstfree] = state;
|
||
|
nxt[firstfree] = onenxt;
|
||
|
|
||
|
if ( firstfree > tblend )
|
||
|
{
|
||
|
tblend = firstfree++;
|
||
|
|
||
|
if ( firstfree >= current_max_xpairs )
|
||
|
expand_nxt_chk();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* mkprot - create new proto entry
|
||
|
*
|
||
|
* synopsis
|
||
|
* int state[], statenum, comstate;
|
||
|
* mkprot( state, statenum, comstate );
|
||
|
*/
|
||
|
|
||
|
void mkprot( state, statenum, comstate )
|
||
|
int state[], statenum, comstate;
|
||
|
|
||
|
{
|
||
|
int i, slot, tblbase;
|
||
|
|
||
|
if ( ++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE )
|
||
|
{
|
||
|
/* gotta make room for the new proto by dropping last entry in
|
||
|
* the queue
|
||
|
*/
|
||
|
slot = lastprot;
|
||
|
lastprot = protprev[lastprot];
|
||
|
protnext[lastprot] = NIL;
|
||
|
}
|
||
|
|
||
|
else
|
||
|
slot = numprots;
|
||
|
|
||
|
protnext[slot] = firstprot;
|
||
|
|
||
|
if ( firstprot != NIL )
|
||
|
protprev[firstprot] = slot;
|
||
|
|
||
|
firstprot = slot;
|
||
|
prottbl[slot] = statenum;
|
||
|
protcomst[slot] = comstate;
|
||
|
|
||
|
/* copy state into save area so it can be compared with rapidly */
|
||
|
tblbase = numecs * (slot - 1);
|
||
|
|
||
|
for ( i = 1; i <= numecs; ++i )
|
||
|
protsave[tblbase + i] = state[i];
|
||
|
}
|
||
|
|
||
|
|
||
|
/* mktemplate - create a template entry based on a state, and connect the state
|
||
|
* to it
|
||
|
*
|
||
|
* synopsis
|
||
|
* int state[], statenum, comstate, totaltrans;
|
||
|
* mktemplate( state, statenum, comstate, totaltrans );
|
||
|
*/
|
||
|
|
||
|
void mktemplate( state, statenum, comstate )
|
||
|
int state[], statenum, comstate;
|
||
|
|
||
|
{
|
||
|
int i, numdiff, tmpbase, tmp[CSIZE + 1];
|
||
|
Char transset[CSIZE + 1];
|
||
|
int tsptr;
|
||
|
|
||
|
++numtemps;
|
||
|
|
||
|
tsptr = 0;
|
||
|
|
||
|
/* calculate where we will temporarily store the transition table
|
||
|
* of the template in the tnxt[] array. The final transition table
|
||
|
* gets created by cmptmps()
|
||
|
*/
|
||
|
|
||
|
tmpbase = numtemps * numecs;
|
||
|
|
||
|
if ( tmpbase + numecs >= current_max_template_xpairs )
|
||
|
{
|
||
|
current_max_template_xpairs += MAX_TEMPLATE_XPAIRS_INCREMENT;
|
||
|
|
||
|
++num_reallocs;
|
||
|
|
||
|
tnxt = reallocate_integer_array( tnxt, current_max_template_xpairs );
|
||
|
}
|
||
|
|
||
|
for ( i = 1; i <= numecs; ++i )
|
||
|
if ( state[i] == 0 )
|
||
|
tnxt[tmpbase + i] = 0;
|
||
|
else
|
||
|
{
|
||
|
transset[tsptr++] = i;
|
||
|
tnxt[tmpbase + i] = comstate;
|
||
|
}
|
||
|
|
||
|
if ( usemecs )
|
||
|
mkeccl( transset, tsptr, tecfwd, tecbck, numecs, 0 );
|
||
|
|
||
|
mkprot( tnxt + tmpbase, -numtemps, comstate );
|
||
|
|
||
|
/* we rely on the fact that mkprot adds things to the beginning
|
||
|
* of the proto queue
|
||
|
*/
|
||
|
|
||
|
numdiff = tbldiff( state, firstprot, tmp );
|
||
|
mkentry( tmp, numecs, statenum, -numtemps, numdiff );
|
||
|
}
|
||
|
|
||
|
|
||
|
/* mv2front - move proto queue element to front of queue
|
||
|
*
|
||
|
* synopsis
|
||
|
* int qelm;
|
||
|
* mv2front( qelm );
|
||
|
*/
|
||
|
|
||
|
void mv2front( qelm )
|
||
|
int qelm;
|
||
|
|
||
|
{
|
||
|
if ( firstprot != qelm )
|
||
|
{
|
||
|
if ( qelm == lastprot )
|
||
|
lastprot = protprev[lastprot];
|
||
|
|
||
|
protnext[protprev[qelm]] = protnext[qelm];
|
||
|
|
||
|
if ( protnext[qelm] != NIL )
|
||
|
protprev[protnext[qelm]] = protprev[qelm];
|
||
|
|
||
|
protprev[qelm] = NIL;
|
||
|
protnext[qelm] = firstprot;
|
||
|
protprev[firstprot] = qelm;
|
||
|
firstprot = qelm;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* place_state - place a state into full speed transition table
|
||
|
*
|
||
|
* synopsis
|
||
|
* int *state, statenum, transnum;
|
||
|
* place_state( state, statenum, transnum );
|
||
|
*
|
||
|
* State is the statenum'th state. It is indexed by equivalence class and
|
||
|
* gives the number of the state to enter for a given equivalence class.
|
||
|
* Transnum is the number of out-transitions for the state.
|
||
|
*/
|
||
|
|
||
|
void place_state( state, statenum, transnum )
|
||
|
int *state, statenum, transnum;
|
||
|
|
||
|
{
|
||
|
register int i;
|
||
|
register int *state_ptr;
|
||
|
int position = find_table_space( state, transnum );
|
||
|
|
||
|
/* base is the table of start positions */
|
||
|
base[statenum] = position;
|
||
|
|
||
|
/* put in action number marker; this non-zero number makes sure that
|
||
|
* find_table_space() knows that this position in chk/nxt is taken
|
||
|
* and should not be used for another accepting number in another state
|
||
|
*/
|
||
|
chk[position - 1] = 1;
|
||
|
|
||
|
/* put in end-of-buffer marker; this is for the same purposes as above */
|
||
|
chk[position] = 1;
|
||
|
|
||
|
/* place the state into chk and nxt */
|
||
|
state_ptr = &state[1];
|
||
|
|
||
|
for ( i = 1; i <= numecs; ++i, ++state_ptr )
|
||
|
if ( *state_ptr != 0 )
|
||
|
{
|
||
|
chk[position + i] = i;
|
||
|
nxt[position + i] = *state_ptr;
|
||
|
}
|
||
|
|
||
|
if ( position + numecs > tblend )
|
||
|
tblend = position + numecs;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* stack1 - save states with only one out-transition to be processed later
|
||
|
*
|
||
|
* synopsis
|
||
|
* int statenum, sym, nextstate, deflink;
|
||
|
* stack1( statenum, sym, nextstate, deflink );
|
||
|
*
|
||
|
* if there's room for another state one the "one-transition" stack, the
|
||
|
* state is pushed onto it, to be processed later by mk1tbl. If there's
|
||
|
* no room, we process the sucker right now.
|
||
|
*/
|
||
|
|
||
|
void stack1( statenum, sym, nextstate, deflink )
|
||
|
int statenum, sym, nextstate, deflink;
|
||
|
|
||
|
{
|
||
|
if ( onesp >= ONE_STACK_SIZE - 1 )
|
||
|
mk1tbl( statenum, sym, nextstate, deflink );
|
||
|
|
||
|
else
|
||
|
{
|
||
|
++onesp;
|
||
|
onestate[onesp] = statenum;
|
||
|
onesym[onesp] = sym;
|
||
|
onenext[onesp] = nextstate;
|
||
|
onedef[onesp] = deflink;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* tbldiff - compute differences between two state tables
|
||
|
*
|
||
|
* synopsis
|
||
|
* int state[], pr, ext[];
|
||
|
* int tbldiff, numdifferences;
|
||
|
* numdifferences = tbldiff( state, pr, ext )
|
||
|
*
|
||
|
* "state" is the state array which is to be extracted from the pr'th
|
||
|
* proto. "pr" is both the number of the proto we are extracting from
|
||
|
* and an index into the save area where we can find the proto's complete
|
||
|
* state table. Each entry in "state" which differs from the corresponding
|
||
|
* entry of "pr" will appear in "ext".
|
||
|
* Entries which are the same in both "state" and "pr" will be marked
|
||
|
* as transitions to "SAME_TRANS" in "ext". The total number of differences
|
||
|
* between "state" and "pr" is returned as function value. Note that this
|
||
|
* number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
|
||
|
*/
|
||
|
|
||
|
int tbldiff( state, pr, ext )
|
||
|
int state[], pr, ext[];
|
||
|
|
||
|
{
|
||
|
register int i, *sp = state, *ep = ext, *protp;
|
||
|
register int numdiff = 0;
|
||
|
|
||
|
protp = &protsave[numecs * (pr - 1)];
|
||
|
|
||
|
for ( i = numecs; i > 0; --i )
|
||
|
{
|
||
|
if ( *++protp == *++sp )
|
||
|
*++ep = SAME_TRANS;
|
||
|
else
|
||
|
{
|
||
|
*++ep = *sp;
|
||
|
++numdiff;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ( numdiff );
|
||
|
}
|