ack/mach/con_float

603 lines
12 KiB
Plaintext
Raw Normal View History

/*
(c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* $Header$ */
/* #define NOFLOAT for machines without floating point
#define ACKFLOAT for machines using the ACK floating point software
#define IEEEFLOAT for machines using IEEE floating point format
#define OWNFLOAT to use floating point format of machine on which
the code generator runs
If none of these are defined, PDP-11 format is generated.
*/
#ifndef NOFLOAT
#ifndef OWNFLOAT
#include <ctype.h>
struct mantissa {
unsigned long h_32;
unsigned long l_32;
};
struct EXTEND {
short sign;
short exp;
struct mantissa mantissa;
#define m1 mantissa.h_32
#define m2 mantissa.l_32
};
static int b64_add();
static int b64_sft();
static
mul_ext(e1,e2,e3)
struct EXTEND *e1,*e2,*e3;
{
/* Multiply the extended numbers e1 and e2, and put the
result in e3.
*/
register int i,j; /* loop control */
unsigned short mp[4];
unsigned short mc[4];
unsigned short result[8]; /* result */
register unsigned short *pres;
/* first save the sign (XOR) */
e3->sign = e1->sign ^ e2->sign;
/* compute new exponent */
e3->exp = e1->exp + e2->exp + 1;
/* check for overflow/underflow ??? */
/* 128 bit multiply of mantissas */
/* assign unknown long formats */
/* to known unsigned word formats */
mp[0] = e1->m1 >> 16;
mp[1] = (unsigned short) e1->m1;
mp[2] = e1->m2 >> 16;
mp[3] = (unsigned short) e1->m2;
mc[0] = e2->m1 >> 16;
mc[1] = (unsigned short) e2->m1;
mc[2] = e2->m2 >> 16;
mc[3] = (unsigned short) e2->m2;
for (i = 8; i--;) {
result[i] = 0;
}
/*
* fill registers with their components
*/
for(i=4, pres = &result[4];i--;pres--) if (mp[i]) {
unsigned short k = 0;
unsigned long mpi = mp[i];
for(j=4;j--;) {
unsigned long tmp = (unsigned long)pres[j] + k;
if (mc[j]) tmp += mpi * mc[j];
pres[j] = tmp;
k = tmp >> 16;
}
pres[-1] = k;
}
if (! (result[0] & 0x8000)) {
e3->exp--;
for (i = 0; i <= 3; i++) {
result[i] <<= 1;
if (result[i+1]&0x8000) result[i] |= 1;
}
result[4] <<= 1;
}
/*
* combine the registers to a total
*/
e3->m1 = ((unsigned long)(result[0]) << 16) + result[1];
e3->m2 = ((unsigned long)(result[2]) << 16) + result[3];
if (result[4] & 0x8000) {
if (++e3->m2 == 0) {
if (++e3->m1 == 0) {
e3->m1 = 0x80000000;
e3->exp++;
}
}
}
}
static
b64_sft(e1,n)
struct mantissa *e1;
int n;
{
if (n > 0) {
if (n > 63) {
e1->l_32 = 0;
e1->h_32 = 0;
return;
}
if (n >= 32) {
e1->l_32 = e1->h_32;
e1->h_32 = 0;
n -= 32;
}
if (n > 0) {
e1->l_32 >>= n;
if (e1->h_32 != 0) {
e1->l_32 |= (e1->h_32 << (32 - n));
e1->h_32 >>= n;
}
}
return;
}
n = -n;
if (n > 0) {
if (n > 63) {
e1->l_32 = 0;
e1->h_32 = 0;
return;
}
if (n >= 32) {
e1->h_32 = e1->l_32;
e1->l_32 = 0;
n -= 32;
}
if (n > 0) {
e1->h_32 <<= n;
if (e1->l_32 != 0) {
e1->h_32 |= (e1->l_32 >> (32 - n));
e1->l_32 <<= n;
}
}
}
}
static int
b64_add(e1,e2)
/*
* pointers to 64 bit 'registers'
*/
struct mantissa *e1,*e2;
{
register int overflow;
int carry;
/* add higher pair of 32 bits */
overflow = ((unsigned long) 0xFFFFFFFF - e1->h_32 < e2->h_32);
e1->h_32 += e2->h_32;
/* add lower pair of 32 bits */
carry = ((unsigned long) 0xFFFFFFFF - e1->l_32 < e2->l_32);
e1->l_32 += e2->l_32;
if ((carry) && (++e1->h_32 == 0))
return(1); /* had a 64 bit overflow */
else
return(overflow); /* return status from higher add */
}
/* The following tables can be computed with the following bc(1)
program:
obase=16
scale=0
define t(x){
auto a, b, c
a=2;b=1;c=2^32;n=1
while(a<x) {
b=a;n+=n;a*=a
}
n/=2
a=b
while(b<x) {
a=b;b*=c;n+=32
}
n-=32
b=a
while(a<x) {
b=a;a+=a;n+=1
}
n-=1
x*=16^16
b=x%a
x/=a
if(a<=(2*b)) x+=1
obase=10
n
obase=16
return(x)
}
for (i=1;i<28;i++) {
t(10^i)
}
0
for (i=1;i<20;i++) {
t(10^(28*i))
}
0
define r(x){
auto a, b, c
a=2;b=1;c=2^32;n=1
while(a<x) {
b=a;n+=n;a*=a
}
n/=2
a=b
while(b<x) {
a=b;b*=c;n+=32
}
n-=32
b=a
while(a<x) {
b=a;a+=a;n+=1
}
a=b
a*=16^16
b=a%x
a/=x
if(x<=(2*b)) a+=1
obase=10
-n
obase=16
return(a)
}
for (i=1;i<28;i++) {
r(10^i)
}
0
for (i=1;i<20;i++) {
r(10^(28*i))
}
0
*/
static struct EXTEND ten_powers[] = { /* representation of 10 ** i */
{ 0, 0, 0x80000000, 0 },
{ 0, 3, 0xA0000000, 0 },
{ 0, 6, 0xC8000000, 0 },
{ 0, 9, 0xFA000000, 0 },
{ 0, 13, 0x9C400000, 0 },
{ 0, 16, 0xC3500000, 0 },
{ 0, 19, 0xF4240000, 0 },
{ 0, 23, 0x98968000, 0 },
{ 0, 26, 0xBEBC2000, 0 },
{ 0, 29, 0xEE6B2800, 0 },
{ 0, 33, 0x9502F900, 0 },
{ 0, 36, 0xBA43B740, 0 },
{ 0, 39, 0xE8D4A510, 0 },
{ 0, 43, 0x9184E72A, 0 },
{ 0, 46, 0xB5E620F4, 0x80000000 },
{ 0, 49, 0xE35FA931, 0xA0000000 },
{ 0, 53, 0x8E1BC9BF, 0x04000000 },
{ 0, 56, 0xB1A2BC2E, 0xC5000000 },
{ 0, 59, 0xDE0B6B3A, 0x76400000 },
{ 0, 63, 0x8AC72304, 0x89E80000 },
{ 0, 66, 0xAD78EBC5, 0xAC620000 },
{ 0, 69, 0xD8D726B7, 0x177A8000 },
{ 0, 73, 0x87867832, 0x6EAC9000 },
{ 0, 76, 0xA968163F, 0x0A57B400 },
{ 0, 79, 0xD3C21BCE, 0xCCEDA100 },
{ 0, 83, 0x84595161, 0x401484A0 },
{ 0, 86, 0xA56FA5B9, 0x9019A5C8 },
{ 0, 89, 0xCECB8F27, 0xF4200F3A }
};
static struct EXTEND big_ten_powers[] = { /* representation of 10 ** (28*i) */
{ 0, 0, 0x80000000, 0 },
{ 0, 93, 0x813F3978, 0xF8940984 },
{ 0, 186, 0x82818F12, 0x81ED44A0 },
{ 0, 279, 0x83C7088E, 0x1AAB65DB },
{ 0, 372, 0x850FADC0, 0x9923329E },
{ 0, 465, 0x865B8692, 0x5B9BC5C2 },
{ 0, 558, 0x87AA9AFF, 0x79042287 },
{ 0, 651, 0x88FCF317, 0xF22241E2 },
{ 0, 744, 0x8A5296FF, 0xE33CC930 },
{ 0, 837, 0x8BAB8EEF, 0xB6409C1A },
{ 0, 930, 0x8D07E334, 0x55637EB3 },
{ 0, 1023, 0x8E679C2F, 0x5E44FF8F },
{ 0, 1116, 0x8FCAC257, 0x558EE4E6 },
{ 0, 1209, 0x91315E37, 0xDB165AA9 },
{ 0, 1302, 0x929B7871, 0xDE7F22B9 },
{ 0, 1395, 0x940919BB, 0xD4620B6D },
{ 0, 1488, 0x957A4AE1, 0xEBF7F3D4 },
{ 0, 1581, 0x96EF14C6, 0x454AA840 },
{ 0, 1674, 0x98678061, 0x27ECE4F5 },
{ 0, 1767, 0x99E396C1, 0x3A3ACFF2 }
};
static struct EXTEND r_ten_powers[] = { /* representation of 10 ** -i */
{ 0, 0, 0x80000000, 0 },
{ 0, -4, 0xCCCCCCCC, 0xCCCCCCCD },
{ 0, -7, 0xA3D70A3D, 0x70A3D70A },
{ 0, -10, 0x83126E97, 0x8D4FDF3B },
{ 0, -14, 0xD1B71758, 0xE219652C },
{ 0, -17, 0xA7C5AC47, 0x1B478423 },
{ 0, -20, 0x8637BD05, 0xAF6C69B6 },
{ 0, -24, 0xD6BF94D5, 0xE57A42BC },
{ 0, -27, 0xABCC7711, 0x8461CEFD },
{ 0, -30, 0x89705F41, 0x36B4A597 },
{ 0, -34, 0xDBE6FECE, 0xBDEDD5BF },
{ 0, -37, 0xAFEBFF0B, 0xCB24AAFF },
{ 0, -40, 0x8CBCCC09, 0x6F5088CC },
{ 0, -44, 0xE12E1342, 0x4BB40E13 },
{ 0, -47, 0xB424DC35, 0x095CD80F },
{ 0, -50, 0x901D7CF7, 0x3AB0ACD9 },
{ 0, -54, 0xE69594BE, 0xC44DE15B },
{ 0, -57, 0xB877AA32, 0x36A4B449 },
{ 0, -60, 0x9392EE8E, 0x921D5D07 },
{ 0, -64, 0xEC1E4A7D, 0xB69561A5 },
{ 0, -67, 0xBCE50864, 0x92111AEB },
{ 0, -70, 0x971DA050, 0x74DA7BEF },
{ 0, -74, 0xF1C90080, 0xBAF72CB1 },
{ 0, -77, 0xC16D9A00, 0x95928A27 },
{ 0, -80, 0x9ABE14CD, 0x44753B53 },
{ 0, -84, 0xF79687AE, 0xD3EEC551 },
{ 0, -87, 0xC6120625, 0x76589DDB },
{ 0, -90, 0x9E74D1B7, 0x91E07E48 }
};
static struct EXTEND r_big_ten_powers[] = { /* representation of 10 ** -(28*i) */
{ 0, 0, 0x80000000, 0 },
{ 0, -94, 0xFD87B5F2, 0x8300CA0E },
{ 0, -187, 0xFB158592, 0xBE068D2F },
{ 0, -280, 0xF8A95FCF, 0x88747D94 },
{ 0, -373, 0xF64335BC, 0xF065D37D },
{ 0, -466, 0xF3E2F893, 0xDEC3F126 },
{ 0, -559, 0xF18899B1, 0xBC3F8CA2 },
{ 0, -652, 0xEF340A98, 0x172AACE5 },
{ 0, -745, 0xECE53CEC, 0x4A314EBE },
{ 0, -838, 0xEA9C2277, 0x23EE8BCB },
{ 0, -931, 0xE858AD24, 0x8F5C22CA },
{ 0, -1024, 0xE61ACF03, 0x3D1A45DF },
{ 0, -1117, 0xE3E27A44, 0x4D8D98B8 },
{ 0, -1210, 0xE1AFA13A, 0xFBD14D6E },
{ 0, -1303, 0xDF82365C, 0x497B5454 },
{ 0, -1396, 0xDD5A2C3E, 0xAB3097CC },
{ 0, -1489, 0xDB377599, 0xB6074245 },
{ 0, -1582, 0xD91A0545, 0xCDB51186 },
{ 0, -1675, 0xD701CE3B, 0xD387BF48 },
{ 0, -1768, 0xD4EEC394, 0xD6258BF8 }
};
static
add_exponent(e, exp)
struct EXTEND *e;
{
int neg = exp < 0;
int divsz, modsz;
struct EXTEND x;
if (neg) exp = -exp;
divsz = exp / (sizeof(ten_powers)/sizeof(ten_powers[0]));
modsz = exp % (sizeof(ten_powers)/sizeof(ten_powers[0]));
if (neg) {
mul_ext(e, &r_ten_powers[modsz], &x);
mul_ext(&x, &r_big_ten_powers[divsz], e);
}
else {
mul_ext(e, &ten_powers[modsz], &x);
mul_ext(&x, &big_ten_powers[divsz], e);
}
}
_str_ext_cvt(s, ss, e)
char *s, **ss;
struct EXTEND *e;
{
/* Like strtod, but for extended precision */
register int c;
int dotseen = 0;
int digitseen = 0;
int exp = 0;
if (ss) *ss = s;
while (isspace(*s)) s++;
e->sign = 0;
e->exp = 0;
e->m1 = e->m2 = 0;
c = *s;
switch(c) {
case '-':
e->sign = 1;
case '+':
s++;
}
while (c = *s++, isdigit(c) || (c == '.' && ! dotseen++)) {
if (c == '.') continue;
digitseen = 1;
if (e->m1 <= (unsigned long)(0xFFFFFFFF)/10) {
struct mantissa a1;
a1 = e->mantissa;
b64_sft(&(e->mantissa), -3);
b64_sft(&a1, -1);
b64_add(&(e->mantissa), &a1);
a1.h_32 = 0;
a1.l_32 = c - '0';
b64_add(&(e->mantissa), &a1);
}
else exp++;
if (dotseen) exp--;
}
if (! digitseen) return;
if (ss) *ss = s - 1;
if (c == 'E' || c == 'e') {
int exp1 = 0;
int sign = 1;
switch(*s) {
case '-':
sign = -1;
case '+':
s++;
}
if (c = *s, isdigit(c)) {
do {
exp1 = 10 * exp1 + (c - '0');
} while (c = *++s, isdigit(c));
if (ss) *ss = s;
}
exp += sign * exp1;
}
if (e->m1 == 0 && e->m2 == 0) return;
e->exp = 63;
while (! (e->m1 & 0x80000000)) {
b64_sft(&(e->mantissa),-1);
e->exp--;
}
add_exponent(e, exp);
}
#endif
#endif
#ifdef NOFLOAT
con_float() {
static int been_here;
if (argval != 4 && argval != 8)
fatal("bad fcon size");
fputs(".data4\t", codefile);
if (argval == 8)
fputs("0,", codefile);
fputs("0 !dummy float\n", codefile);
if ( !been_here++) {
fputs("Warning : dummy float-constant(s)\n", stderr);
}
}
#else
con_float() {
int i, j;
char *p;
#ifdef OWNFLOAT
float fl;
double f;
double atof();
#else
int overflow = 0;
struct EXTEND e;
char buf[8];
#endif
if (argval!= 4 && argval!= 8) {
fprintf(stderr,"float constant size = %d\n",argval);
fatal("bad fcon size");
}
fprintf(codefile,"!float %s sz %d\n", str, argval);
#ifdef OWNFLOAT
f = atof(str);
if (argval == 4) {
fl = f;
p = (char *) &fl;
}
else {
p = (char *) &f;
}
fprintf(codefile, ".data1 0%o", *p++ & 0377);
for (i = argval-1; i; i--) {
fprintf(codefile,",0%o", *p++ & 0377);
}
#else
_str_ext_cvt(str, (char **) 0, &e);
#if IEEEFLOAT+ACKFLOAT
if (argval == 4) {
#endif
e.exp += 127;
#ifndef IEEEFLOAT
e.exp += 2;
#endif
if (e.m1 == 0) e.exp = 0;
#if IEEEFLOAT+ACKFLOAT
if (e.exp >= 255) {
overflow = 1;
e.exp = 255;
e.m1 = e.m2 = 0;
}
if (e.exp <= 0) {
#if IEEEFLOAT
b64_sft(&(e.mantissa), 1);
if (e.exp < 0) {
b64_sft(&(e.mantissa), -e.exp);
e.exp = 0;
}
#else
e.exp = 0;
e.m1 = e.m2 = 0;
#endif
}
#endif
buf[0] = (e.sign << 7) | (e.exp >> 1);
buf[1] = ((e.exp&1) << 7) | ((e.m1 & 0x7fffffff) >> 24);
buf[2] = e.m1 >> 16;
buf[3] = e.m1 >> 8;
if (argval == 8) {
buf[4] = e.m1;
buf[5] = e.m2 >> 24;
buf[6] = e.m2 >> 16;
buf[7] = e.m2 >> 8;
b64_sft(&(e.mantissa), -56);
}
else b64_sft(&(e.mantissa), -24);
#if IEEEFLOAT+ACKFLOAT
}
else {
e.exp += 1023;
#ifndef IEEEFLOAT
e.exp += 2;
#endif
if (e.m1 == 0) e.exp = 0;
if (e.exp >= 2047) {
overflow = 1;
e.exp = 2047;
e.m1 = e.m2 = 0;
}
if (e.exp <= 0) {
#if IEEEFLOAT
b64_sft(&(e.mantissa), 1);
if (e.exp < 0) {
b64_sft(&(e.mantissa), -e.exp);
e.exp = 0;
}
#else
e.exp = 0;
e.m1 = e.m2 = 0;
#endif
}
buf[0] = (e.sign << 7) | (e.exp >> 4);
buf[1] = ((e.exp & 017)<< 4) | ((e.m1&0x7fffffff) >> 27);
buf[2] = e.m1 >> 19;
buf[3] = e.m1 >> 11;
buf[4] = e.m1 >> 3;
buf[5] = (e.m1 << 5) | (e.m2 >> 27);
buf[6] = e.m2 >> 19;
buf[7] = e.m2 >> 11;
b64_sft(&(e.mantissa), -53);
}
#endif
if (! overflow && (e.m1 & 0x80000000)) for (i = argval-1; i>=0; i--) {
if ((buf[i] &0377) != 0377) {
buf[i]++;
break;
}
else buf[i] = 0;
}
if (overflow || i < 0) {
fprintf(stderr, "Warning: overflow in floating point constant %s\n", str);
}
for (i = 0; i < argval; i++) {
fprintf(codefile,
i != 0 ? ",0%o" : ".data1 0%o",
buf[i]&0377);
}
#endif
putc('\n', codefile);
}
#endif