1988-07-22 16:53:29 +00:00
|
|
|
/*
|
|
|
|
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
|
|
|
|
* See the copyright notice in the ACK home directory, in the file "Copyright".
|
|
|
|
*
|
|
|
|
* Author: Ceriel J.H. Jacobs
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* $Header$ */
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <errno.h>
|
|
|
|
|
1988-07-26 13:04:24 +00:00
|
|
|
extern int errno;
|
|
|
|
|
1988-07-22 16:53:29 +00:00
|
|
|
double
|
|
|
|
yn(n, x)
|
|
|
|
double x;
|
|
|
|
{
|
|
|
|
/* Use y0, y1, and the recurrence relation
|
|
|
|
y(n+1,x) = 2*n*y(n,x)/x - y(n-1, x).
|
|
|
|
According to Hart & Cheney, this is stable for all
|
|
|
|
x, n.
|
|
|
|
Also use: y(-n,x) = (-1)^n * y(n, x)
|
|
|
|
*/
|
|
|
|
|
|
|
|
int negative = 0;
|
|
|
|
extern double y0(), y1();
|
|
|
|
double yn1, yn2;
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
if (x <= 0) {
|
|
|
|
errno = EDOM;
|
|
|
|
return -HUGE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n < 0) {
|
|
|
|
n = -n;
|
|
|
|
negative = (n % 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n == 0) return y0(x);
|
|
|
|
if (n == 1) return y1(x);
|
|
|
|
|
|
|
|
yn2 = y0(x);
|
|
|
|
yn1 = y1(x);
|
|
|
|
for (i = 1; i < n; i++) {
|
|
|
|
double tmp = yn1;
|
|
|
|
yn1 = (i*2)*yn1/x - yn2;
|
|
|
|
yn2 = tmp;
|
|
|
|
}
|
|
|
|
if (negative) return -yn1;
|
|
|
|
return yn1;
|
|
|
|
}
|
|
|
|
|
|
|
|
double
|
|
|
|
jn(n, x)
|
|
|
|
double x;
|
|
|
|
{
|
|
|
|
/* Unfortunately, according to Hart & Cheney, the recurrence
|
|
|
|
j(n+1,x) = 2*n*j(n,x)/x - j(n-1,x) is unstable for
|
|
|
|
increasing n, except when x > n.
|
|
|
|
However, j(n,x)/j(n-1,x) = 2/(2*n-x*x/(2*(n+1)-x*x/( ....
|
|
|
|
(a continued fraction).
|
|
|
|
We can use this to determine KJn and KJn-1, where K is a
|
|
|
|
normalization constant not yet known. This enables us
|
|
|
|
to determine KJn-2, ...., KJ1, KJ0. Now we can use the
|
|
|
|
J0 or J1 approximation to determine K.
|
|
|
|
Use: j(-n, x) = (-1)^n * j(n, x)
|
|
|
|
j(n, -x) = (-1)^n * j(n, x)
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern double j0(), j1();
|
|
|
|
|
|
|
|
if (n < 0) {
|
|
|
|
n = -n;
|
|
|
|
x = -x;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (n == 0) return j0(x);
|
|
|
|
if (n == 1) return j1(x);
|
|
|
|
if (x > n) {
|
|
|
|
/* in this case, the recurrence relation is stable for
|
|
|
|
increasing n, so we use that.
|
|
|
|
*/
|
|
|
|
double jn2 = j0(x), jn1 = j1(x);
|
|
|
|
register int i;
|
|
|
|
|
|
|
|
for (i = 1; i < n; i++) {
|
|
|
|
double tmp = jn1;
|
|
|
|
jn1 = (2*i)*jn1/x - jn2;
|
|
|
|
jn2 = tmp;
|
|
|
|
}
|
|
|
|
return jn1;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
/* we first compute j(n,x)/j(n-1,x) */
|
|
|
|
register int i;
|
|
|
|
double quotient = 0.0;
|
|
|
|
double xsqr = x*x;
|
|
|
|
double jn1, jn2;
|
|
|
|
|
|
|
|
for (i = 20; /* ??? how many do we need ??? */
|
|
|
|
i > 0; i--) {
|
|
|
|
quotient = xsqr/(2*(i+n) - quotient);
|
|
|
|
}
|
|
|
|
quotient = x / (2*n - quotient);
|
|
|
|
|
|
|
|
jn1 = quotient;
|
|
|
|
jn2 = 1.0;
|
|
|
|
for (i = n-1; i > 0; i--) {
|
|
|
|
/* recurrence relation is stable for decreasing n
|
|
|
|
*/
|
|
|
|
double tmp = jn2;
|
|
|
|
jn2 = (2*i)*jn2/x - jn1;
|
|
|
|
jn1 = tmp;
|
|
|
|
}
|
|
|
|
/* So, now we have K*Jn = quotient and K*J0 = jn2.
|
|
|
|
Now it is easy; compute real j0, this gives K = jn2/j0,
|
|
|
|
and this then gives Jn = quotient/K = j0 * quotient / jn2.
|
|
|
|
*/
|
|
|
|
return j0(x)*quotient/jn2;
|
|
|
|
}
|
|
|
|
}
|