ack/lang/pc/libpc/exp.c

113 lines
1.9 KiB
C
Raw Normal View History

1984-07-20 10:44:57 +00:00
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
1984-07-20 10:44:57 +00:00
/* $Header$ */
1988-07-25 11:40:57 +00:00
#define __NO_DEFS
#include <math.h>
#include <pc_err.h>
extern _trp();
1984-07-20 10:44:57 +00:00
static double
floor(x)
double x;
1984-07-20 10:44:57 +00:00
{
extern double _fif();
double val;
return _fif(x, 1,0, &val) < 0 ? val - 1.0 : val ;
/* this also works if _fif always returns a positive
fractional part
*/
1984-07-20 10:44:57 +00:00
}
static double
ldexp(fl,exp)
double fl;
int exp;
1984-07-20 10:44:57 +00:00
{
extern double _fef();
int sign = 1;
int currexp;
1984-07-20 10:44:57 +00:00
if (fl<0) {
fl = -fl;
sign = -1;
1984-07-20 10:44:57 +00:00
}
fl = _fef(fl,&currexp);
exp += currexp;
if (exp > 0) {
while (exp>30) {
fl *= (double) (1L << 30);
exp -= 30;
}
fl *= (double) (1L << exp);
1984-07-20 10:44:57 +00:00
}
else {
while (exp<-30) {
fl /= (double) (1L << 30);
exp += 30;
}
fl /= (double) (1L << -exp);
1984-07-20 10:44:57 +00:00
}
return sign * fl;
1984-07-20 10:44:57 +00:00
}
double
_exp(x)
double x;
1984-07-20 10:44:57 +00:00
{
/* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] */
/* Hart & Cheney #1069 */
static double p[3] = {
0.2080384346694663001443843411e+07,
0.3028697169744036299076048876e+05,
0.6061485330061080841615584556e+02
};
static double q[4] = {
0.6002720360238832528230907598e+07,
0.3277251518082914423057964422e+06,
0.1749287689093076403844945335e+04,
0.1000000000000000000000000000e+01
};
int negative = x < 0;
int ipart, large = 0;
double xsqr, xPxx, Qxx;
1984-07-20 10:44:57 +00:00
if (x < M_LN_MIN_D) {
return M_MIN_D;
}
if (x >= M_LN_MAX_D) {
if (x > M_LN_MAX_D) {
_trp(EEXP);
return HUGE;
}
return M_MAX_D;
}
if (negative) {
x = -x;
}
x /= M_LN2;
ipart = floor(x);
x -= ipart;
if (x > 0.5) {
large = 1;
x -= 0.5;
1984-07-20 10:44:57 +00:00
}
xsqr = x * x;
xPxx = x * POLYNOM2(xsqr, p);
Qxx = POLYNOM3(xsqr, q);
x = (Qxx + xPxx) / (Qxx - xPxx);
if (large) x *= M_SQRT2;
x = ldexp(x, ipart);
if (negative) return 1.0/x;
return x;
1984-07-20 10:44:57 +00:00
}