ack/lang/pc/comp/casestat.C

255 lines
5.4 KiB
C++
Raw Normal View History

1988-10-26 15:21:11 +00:00
/* C A S E S T A T E M E N T C O D E G E N E R A T I O N */
#include "debug.h"
#include <alloc.h>
#include <assert.h>
#include <em.h>
#include "LLlex.h"
#include "Lpars.h"
#include "chk_expr.h"
#include "density.h"
#include "main.h"
#include "node.h"
#include "type.h"
struct case_hdr {
struct case_hdr *ch_next; /* in the free list */
int ch_nrofentries; /* number of cases */
struct type *ch_type; /* type of case expression */
arith ch_lowerbd; /* lowest case label */
arith ch_upperbd; /* highest case label */
struct case_entry *ch_entries; /* the cases */
};
/* ALLOCDEF "case_hdr" 5 */
struct case_entry {
struct case_entry *ce_next; /* next in list */
arith ce_value; /* value of case label */
label ce_label; /* generated label */
};
/* ALLOCDEF "case_entry" 10 */
/* The constant DENSITY determines when CSA and when CSB instructions
are generated. Reasonable values are: 2, 3, 4.
On machines that have lots of address space and memory, higher values
might also be reasonable. On these machines the density of jump tables
may be lower.
*/
#define compact(nr, low, up) (nr != 0 && (up - low) / nr <= DENSITY)
CaseExpr(nd)
struct node *nd;
{
/* Check the expression and generate code for it
*/
register struct node *expp = nd->nd_left;
if( !ChkExpression(expp) ) return;
if( !(expp->nd_type->tp_fund & T_ORDINAL) ) {
node_error(expp, "case-expression must be ordinal");
return;
}
if( !err_occurred ) {
CodePExpr(expp);
C_bra(nd->nd_lab);
}
}
CaseEnd(nd, exit_label)
struct node *nd;
label exit_label;
{
/* Stack a new case header and fill in the necessary fields.
*/
register struct case_hdr *ch = new_case_hdr();
register struct node *right;
assert(nd->nd_class == Link && nd->nd_symb == CASE);
ch->ch_type = nd->nd_left->nd_type;
right = nd->nd_right;
/* Now, create case label list
*/
while( right ) {
assert(right->nd_class == Link && right->nd_symb == ':');
if( !AddCases(ch, right->nd_left, right->nd_lab) ) {
FreeCh(ch);
return;
}
right = right->nd_right;
}
if( !err_occurred )
CaseCode(nd->nd_lab, ch, exit_label);
FreeCh(ch);
}
FreeCh(ch)
register struct case_hdr *ch;
{
/* free the allocated case structure
*/
register struct case_entry *ce;
ce = ch->ch_entries;
while( ce ) {
struct case_entry *tmp = ce->ce_next;
free_case_entry(ce);
ce = tmp;
}
free_case_hdr(ch);
}
AddCases(ch, nd, CaseLabel)
register struct case_hdr *ch;
register struct node *nd;
label CaseLabel;
{
while( nd ) {
if( !AddOneCase(ch, nd, CaseLabel) )
return 0;
nd = nd->nd_next;
}
return 1;
}
AddOneCase(ch, nd, lbl)
register struct case_hdr *ch;
register struct node *nd;
label lbl;
{
register struct case_entry *ce = new_case_entry();
register struct case_entry *c1 = ch->ch_entries, *c2 = 0;
ce->ce_value = nd->nd_INT;
ce->ce_label = lbl;
if( !TstCompat(ch->ch_type, nd->nd_type) ) {
node_error(nd, "case-statement: type incompatibility in case");
free_case_entry(ce);
return 0;
}
if( bounded(ch->ch_type) ) {
arith lo, hi;
getbounds(ch->ch_type, &lo, &hi);
if( ce->ce_value < lo || ce->ce_value > hi )
warning("case-statement: constant out of bounds");
}
if( !ch->ch_entries ) {
/* first case entry
*/
ce->ce_next = (struct case_entry *) 0;
ch->ch_entries = ce;
ch->ch_lowerbd = ch->ch_upperbd = ce->ce_value;
ch->ch_nrofentries = 1;
}
else {
/* second etc. case entry
find the proper place to put ce into the list
*/
if( ce->ce_value < ch->ch_lowerbd )
ch->ch_lowerbd = ce->ce_value;
else if( ce->ce_value > ch->ch_upperbd )
ch->ch_upperbd = ce->ce_value;
while( c1 && c1->ce_value < ce->ce_value ) {
c2 = c1;
c1 = c1->ce_next;
}
/* At this point three cases are possible:
1: c1 != 0 && c2 != 0:
insert ce somewhere in the middle
2: c1 != 0 && c2 == 0:
insert ce right after the head
3: c1 == 0 && c2 != 0:
append ce to last element
The case c1 == 0 && c2 == 0 cannot occur, since
the list is guaranteed not to be empty.
*/
if( c1 ) {
if( c1->ce_value == ce->ce_value ) {
node_error(nd,
"case-statement: multiple case entry");
free_case_entry(ce);
return 0;
}
if( c2 ) {
ce->ce_next = c2->ce_next;
c2->ce_next = ce;
}
else {
ce->ce_next = ch->ch_entries;
ch->ch_entries = ce;
}
}
else {
assert(c2);
ce->ce_next = (struct case_entry *) 0;
c2->ce_next = ce;
}
(ch->ch_nrofentries)++;
}
return 1;
}
CaseCode(lbl, ch, exit_label)
label lbl;
struct case_hdr *ch;
label exit_label;
{
label CaseDescrLab = ++data_label; /* rom must have a label */
register struct case_entry *ce;
register arith val;
C_df_dlb(CaseDescrLab);
C_rom_icon("0", pointer_size);
if( compact(ch->ch_nrofentries, ch->ch_lowerbd, ch->ch_upperbd) ) {
/* CSA */
C_rom_cst(ch->ch_lowerbd);
C_rom_cst(ch->ch_upperbd - ch->ch_lowerbd);
ce = ch->ch_entries;
for( val = ch->ch_lowerbd; val <= ch->ch_upperbd; val++ ) {
assert(ce);
if( val == ce->ce_value ) {
C_rom_ilb(ce->ce_label);
ce = ce->ce_next;
}
else
C_rom_icon("0", pointer_size);
}
C_df_ilb(lbl);
C_lae_dlb(CaseDescrLab, (arith) 0);
C_csa(word_size);
}
else {
/* CSB */
C_rom_cst((arith) ch->ch_nrofentries);
for( ce = ch->ch_entries; ce; ce = ce->ce_next ) {
C_rom_cst(ce->ce_value);
C_rom_ilb(ce->ce_label);
}
C_df_ilb(lbl);
C_lae_dlb(CaseDescrLab, (arith) 0);
C_csb(word_size);
}
C_df_ilb(exit_label);
}