use better algorithms for some mathematical functions
This commit is contained in:
parent
6d78cd6710
commit
11349c78cd
|
@ -17,7 +17,6 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
CONST
|
||||
OneRadianInDegrees = 57.295779513082320876798155D;
|
||||
OneDegreeInRadians = 0.017453292519943295769237D;
|
||||
Sqrt2 = 1.41421356237309504880168872420969808D;
|
||||
OneOverSqrt2 = 0.70710678118654752440084436210484904D;
|
||||
|
||||
(* basic functions *)
|
||||
|
@ -94,56 +93,68 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
RETURN temp;
|
||||
END longsqrt;
|
||||
|
||||
PROCEDURE ldexp(x:LONGREAL; n: INTEGER): LONGREAL;
|
||||
BEGIN
|
||||
WHILE n >= 16 DO
|
||||
x := x * 65536.0D;
|
||||
n := n - 16;
|
||||
END;
|
||||
WHILE n > 0 DO
|
||||
x := x * 2.0D;
|
||||
DEC(n);
|
||||
END;
|
||||
WHILE n <= -16 DO
|
||||
x := x / 65536.0D;
|
||||
n := n + 16;
|
||||
END;
|
||||
WHILE n < 0 DO
|
||||
x := x / 2.0D;
|
||||
INC(n);
|
||||
END;
|
||||
RETURN x;
|
||||
END ldexp;
|
||||
|
||||
PROCEDURE exp(x: REAL): REAL;
|
||||
BEGIN
|
||||
RETURN SHORT(longexp(LONG(x)));
|
||||
END exp;
|
||||
|
||||
PROCEDURE longexp(x: LONGREAL): LONGREAL;
|
||||
(* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] *)
|
||||
(* Hart & Cheney #1069 *)
|
||||
(* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*)
|
||||
CONST
|
||||
p0 = 0.2080384346694663001443843411D+07;
|
||||
p1 = 0.3028697169744036299076048876D+05;
|
||||
p2 = 0.6061485330061080841615584556D+02;
|
||||
q0 = 0.6002720360238832528230907598D+07;
|
||||
q1 = 0.3277251518082914423057964422D+06;
|
||||
q2 = 0.1749287689093076403844945335D+04;
|
||||
q3 = 0.1000000000000000000000000000D+01;
|
||||
p0 = 0.25000000000000000000D+00;
|
||||
p1 = 0.75753180159422776666D-02;
|
||||
p2 = 0.31555192765684646356D-04;
|
||||
q0 = 0.50000000000000000000D+00;
|
||||
q1 = 0.56817302698551221787D-01;
|
||||
q2 = 0.63121894374398503557D-03;
|
||||
q3 = 0.75104028399870046114D-06;
|
||||
|
||||
VAR
|
||||
neg: BOOLEAN;
|
||||
xPxx, Qxx: LONGREAL;
|
||||
n: LONGREAL;
|
||||
n1 : INTEGER;
|
||||
xsq : LONGREAL;
|
||||
large: BOOLEAN;
|
||||
n: INTEGER;
|
||||
xn, g, x1, x2: LONGREAL;
|
||||
BEGIN
|
||||
neg := x < 0.0D;
|
||||
IF neg THEN
|
||||
x := -x;
|
||||
END;
|
||||
x := FIF(x/longln2, 1.0D, n);
|
||||
large := x > 0.5D;
|
||||
IF large THEN x := x - 0.5D; END;
|
||||
xsq := x*x;
|
||||
xPxx := x*((p2*xsq+p1)*xsq+p0);
|
||||
Qxx := ((q3*xsq+q2)*xsq+q1)*xsq+q0;
|
||||
x := (Qxx + xPxx)/(Qxx - xPxx);
|
||||
IF large THEN
|
||||
x := x * Sqrt2;
|
||||
n := TRUNC(x/longln2 + 0.5D);
|
||||
xn := FLOATD(n);
|
||||
x1 := FLOATD(TRUNCD(x));
|
||||
x2 := x - x1;
|
||||
g := ((x1 - xn * 0.693359375D)+x2) - xn * (-2.1219444005469058277D-4);
|
||||
IF neg THEN
|
||||
g := -g;
|
||||
n := -n;
|
||||
END;
|
||||
n1 := TRUNCD(n + 0.5D);
|
||||
WHILE n1 >= 16 DO
|
||||
x := x * 65536.0D;
|
||||
n1 := n1 - 16;
|
||||
END;
|
||||
WHILE n1 > 0 DO
|
||||
x := x * 2.0D;
|
||||
DEC(n1);
|
||||
END;
|
||||
IF neg THEN RETURN 1.0D/x; END;
|
||||
RETURN x;
|
||||
xn := g*g;
|
||||
x := g*((p2*xn+p1)*xn+p0);
|
||||
INC(n);
|
||||
RETURN ldexp(0.5D + x/((((q3*xn+q2)*xn+q1)*xn+q0) - x), n);
|
||||
END longexp;
|
||||
|
||||
PROCEDURE ln(x: REAL): REAL; (* natural log *)
|
||||
|
@ -152,23 +163,21 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
END ln;
|
||||
|
||||
PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *)
|
||||
(* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)]
|
||||
Hart & Cheney #2707
|
||||
*)
|
||||
(* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*)
|
||||
CONST
|
||||
p0 = 0.7504094990777122217455611007D+02;
|
||||
p1 = -0.1345669115050430235318253537D+03;
|
||||
p2 = 0.7413719213248602512779336470D+02;
|
||||
p3 = -0.1277249755012330819984385000D+02;
|
||||
p4 = 0.3327108381087686938144000000D+00;
|
||||
q0 = 0.3752047495388561108727775374D+02;
|
||||
q1 = -0.7979028073715004879439951583D+02;
|
||||
q2 = 0.5616126132118257292058560360D+02;
|
||||
q3 = -0.1450868091858082685362325000D+02;
|
||||
q4 = 0.1000000000000000000000000000D+01;
|
||||
p0 = -0.64124943423745581147D+02;
|
||||
p1 = 0.16383943563021534222D+02;
|
||||
p2 = -0.78956112887491257267D+00;
|
||||
q0 = -0.76949932108494879777D+03;
|
||||
q1 = 0.31203222091924532844D+03;
|
||||
q2 = -0.35667977739034646171D+02;
|
||||
q3 = 1.0D;
|
||||
VAR
|
||||
exp: INTEGER;
|
||||
z, zsq: LONGREAL;
|
||||
z, znum, zden, w: LONGREAL;
|
||||
|
||||
BEGIN
|
||||
IF x <= 0.0D THEN
|
||||
|
@ -176,15 +185,20 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
HALT
|
||||
END;
|
||||
x := FEF(x, exp);
|
||||
WHILE x < OneOverSqrt2 DO
|
||||
x := x + x;
|
||||
IF x > OneOverSqrt2 THEN
|
||||
znum := (x - 0.5D) - 0.5D;
|
||||
zden := x * 0.5D + 0.5D;
|
||||
ELSE
|
||||
znum := x - 0.5D;
|
||||
zden := znum * 0.5D + 0.5D;
|
||||
DEC(exp);
|
||||
END;
|
||||
z := (x - 1.0D) / (x + 1.0D);
|
||||
zsq := z*z;
|
||||
RETURN z * ((((p4*zsq+p3)*zsq+p2)*zsq+p1)*zsq+p0) /
|
||||
((((q4*zsq+q3)*zsq+q2)*zsq+q1)*zsq+q0) +
|
||||
FLOATD(exp) * longln2;
|
||||
z := znum / zden;
|
||||
w := z * z;
|
||||
x := z + z * w * (((p2*w+p1)*w+p0)/(((q3*w+q2)*w+q1)*w+q0));
|
||||
z := FLOATD(exp);
|
||||
x := x + z * (-2.121944400546905827679D-4);
|
||||
RETURN x + z * 0.693359375D;
|
||||
END longln;
|
||||
|
||||
PROCEDURE log(x: REAL): REAL; (* log with base 10 *)
|
||||
|
@ -204,80 +218,60 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
RETURN SHORT(longsin(LONG(x)));
|
||||
END sin;
|
||||
|
||||
PROCEDURE sinus(x: LONGREAL; quadrant: INTEGER) : LONGREAL;
|
||||
(* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1]
|
||||
Hart & Cheney # 3374
|
||||
PROCEDURE sinus(x: LONGREAL; cosflag: BOOLEAN) : LONGREAL;
|
||||
(* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*)
|
||||
CONST
|
||||
p0 = 0.4857791909822798473837058825D+10;
|
||||
p1 = -0.1808816670894030772075877725D+10;
|
||||
p2 = 0.1724314784722489597789244188D+09;
|
||||
p3 = -0.6351331748520454245913645971D+07;
|
||||
p4 = 0.1002087631419532326179108883D+06;
|
||||
p5 = -0.5830988897678192576148973679D+03;
|
||||
q0 = 0.3092566379840468199410228418D+10;
|
||||
q1 = 0.1202384907680254190870913060D+09;
|
||||
q2 = 0.2321427631602460953669856368D+07;
|
||||
q3 = 0.2848331644063908832127222835D+05;
|
||||
q4 = 0.2287602116741682420054505174D+03;
|
||||
q5 = 0.1000000000000000000000000000D+01;
|
||||
A1 = 6.2822265625D;
|
||||
A2 = 0.00095874467958647692528676655900576D;
|
||||
r0 = -0.16666666666666665052D+00;
|
||||
r1 = 0.83333333333331650314D-02;
|
||||
r2 = -0.19841269841201840457D-03;
|
||||
r3 = 0.27557319210152756119D-05;
|
||||
r4 = -0.25052106798274584544D-07;
|
||||
r5 = 0.16058936490371589114D-09;
|
||||
r6 = -0.76429178068910467734D-12;
|
||||
r7 = 0.27204790957888846175D-14;
|
||||
A1 = 3.1416015625D;
|
||||
A2 = -8.908910206761537356617D-6;
|
||||
VAR
|
||||
xsq, x1, x2, n : LONGREAL;
|
||||
t : INTEGER;
|
||||
x1, x2, y : LONGREAL;
|
||||
neg : BOOLEAN;
|
||||
BEGIN
|
||||
IF x < 0.0D THEN
|
||||
INC(quadrant, 2);
|
||||
x := -x;
|
||||
neg := TRUE;
|
||||
x := -x
|
||||
ELSE neg := FALSE
|
||||
END;
|
||||
IF longhalfpi - x = longhalfpi THEN
|
||||
CASE quadrant OF
|
||||
| 0,2:
|
||||
RETURN 0.0D;
|
||||
| 1:
|
||||
RETURN 1.0D;
|
||||
| 3:
|
||||
RETURN -1.0D;
|
||||
END;
|
||||
IF cosflag THEN
|
||||
neg := FALSE;
|
||||
y := longhalfpi + x
|
||||
ELSE
|
||||
y := x
|
||||
END;
|
||||
IF x >= longtwicepi THEN
|
||||
IF x <= FLOATD(MAX(LONGINT)) THEN
|
||||
(* Use extended precision to calculate reduced argument.
|
||||
Split 2pi in 2 parts a1 and a2, of which the first only
|
||||
uses some bits of the mantissa, so that n * a1 is
|
||||
exactly representable, where n is the integer part of
|
||||
x/pi.
|
||||
Here we used 12 bits of the mantissa for a1.
|
||||
Also split x in integer part x1 and fraction part x2.
|
||||
We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
|
||||
*)
|
||||
n := FLOATD(TRUNCD(x/longtwicepi));
|
||||
x1 := FLOATD(TRUNCD(x));
|
||||
x2 := x - x1;
|
||||
x := ((x1 - n * A1) + x2) - n * A2;
|
||||
ELSE
|
||||
x := FIF(x/longtwicepi, 1.0D, x1) * longtwicepi;
|
||||
END
|
||||
y := y / longpi + 0.5D;
|
||||
|
||||
IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
|
||||
IF FIF(y, 0.5D, x1) # 0.0D THEN neg := NOT neg END;
|
||||
IF cosflag THEN y := y - 0.5D END;
|
||||
x2 := FIF(x, 1.0, x1);
|
||||
x := x1 - y * A1;
|
||||
x := x + x2;
|
||||
x := x - y * A2;
|
||||
|
||||
IF x < 0.0D THEN
|
||||
neg := NOT neg;
|
||||
x := -x
|
||||
END;
|
||||
x := x / longhalfpi;
|
||||
t := TRUNC(x);
|
||||
x := x - FLOATD(t);
|
||||
quadrant := (quadrant + t MOD 4) MOD 4;
|
||||
IF ODD(quadrant) THEN
|
||||
x := 1.0D - x;
|
||||
END;
|
||||
IF quadrant > 1 THEN
|
||||
x := -x;
|
||||
END;
|
||||
xsq := x * x;
|
||||
RETURN x * (((((p5*xsq+p4)*xsq+p3)*xsq+p2)*xsq+p1)*xsq+p0) /
|
||||
(((((q5*xsq+q4)*xsq+q3)*xsq+q2)*xsq+q1)*xsq+q0);
|
||||
y := x * x;
|
||||
x := x + x * y * (((((((r7*y+r6)*y+r5)*y+r4)*y+r3)*y+r2)*y+r1)*y+r0);
|
||||
IF neg THEN RETURN -x END;
|
||||
RETURN x;
|
||||
END sinus;
|
||||
|
||||
|
||||
PROCEDURE longsin(x: LONGREAL): LONGREAL;
|
||||
BEGIN
|
||||
RETURN sinus(x, 0);
|
||||
RETURN sinus(x, FALSE);
|
||||
END longsin;
|
||||
|
||||
PROCEDURE cos(x: REAL): REAL;
|
||||
|
@ -288,7 +282,7 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
PROCEDURE longcos(x: LONGREAL): LONGREAL;
|
||||
BEGIN
|
||||
IF x < 0.0D THEN x := -x; END;
|
||||
RETURN sinus(x, 1);
|
||||
RETURN sinus(x, TRUE);
|
||||
END longcos;
|
||||
|
||||
PROCEDURE tan(x: REAL): REAL;
|
||||
|
@ -297,14 +291,49 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
END tan;
|
||||
|
||||
PROCEDURE longtan(x: LONGREAL): LONGREAL;
|
||||
VAR cosinus: LONGREAL;
|
||||
(* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*)
|
||||
|
||||
CONST
|
||||
p1 = -0.13338350006421960681D+00;
|
||||
p2 = 0.34248878235890589960D-02;
|
||||
p3 = -0.17861707342254426711D-04;
|
||||
|
||||
q0 = 1.0D;
|
||||
q1 = -0.46671683339755294240D+00;
|
||||
q2 = 0.25663832289440112864D-01;
|
||||
q3 = -0.31181531907010027307D-03;
|
||||
q4 = 0.49819433993786512270D-06;
|
||||
|
||||
A1 = 1.57080078125D;
|
||||
A2 = -4.454455103380768678308D-06;
|
||||
|
||||
VAR y, x1, x2: LONGREAL;
|
||||
negative: BOOLEAN;
|
||||
invert: BOOLEAN;
|
||||
BEGIN
|
||||
cosinus := longcos(x);
|
||||
IF cosinus = 0.0D THEN
|
||||
Message("tan: result does not exist");
|
||||
HALT
|
||||
END;
|
||||
RETURN longsin(x)/cosinus;
|
||||
negative := x < 0.0D;
|
||||
y := x / longhalfpi + 0.5D;
|
||||
|
||||
(* Use extended precision to calculate reduced argument.
|
||||
Here we used 12 bits of the mantissa for a1.
|
||||
Also split x in integer part x1 and fraction part x2.
|
||||
*)
|
||||
IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
|
||||
invert := FIF(y, 0.5D, x1) # 0.0D;
|
||||
x2 := FIF(x, 1.0D, x1);
|
||||
x := x1 - y * A1;
|
||||
x := x + x2;
|
||||
x := x - y * A2;
|
||||
|
||||
y := x * x;
|
||||
x := x + x * y * ((p3*y+p2)*y+p1);
|
||||
y := (((q4*y+q3)*y+q2)*y+q1)*y+q0;
|
||||
IF negative THEN x := -x END;
|
||||
IF invert THEN RETURN -y/x END;
|
||||
RETURN x/y;
|
||||
END longtan;
|
||||
|
||||
PROCEDURE arcsin(x: REAL): REAL;
|
||||
|
@ -313,24 +342,48 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
END arcsin;
|
||||
|
||||
PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL;
|
||||
VAR
|
||||
CONST
|
||||
p0 = -0.27368494524164255994D+02;
|
||||
p1 = 0.57208227877891731407D+02;
|
||||
p2 = -0.39688862997540877339D+02;
|
||||
p3 = 0.10152522233806463645D+02;
|
||||
p4 = -0.69674573447350646411D+00;
|
||||
|
||||
q0 = -0.16421096714498560795D+03;
|
||||
q1 = 0.41714430248260412556D+03;
|
||||
q2 = -0.38186303361750149284D+03;
|
||||
q3 = 0.15095270841030604719D+03;
|
||||
q4 = -0.23823859153670238830D+02;
|
||||
q5 = 1.0D;
|
||||
VAR
|
||||
negative : BOOLEAN;
|
||||
big: BOOLEAN;
|
||||
g: LONGREAL;
|
||||
BEGIN
|
||||
negative := x <= 0.0D;
|
||||
negative := x < 0.0D;
|
||||
IF negative THEN x := -x; END;
|
||||
IF x > 1.0D THEN
|
||||
Message("arcsin or arccos: argument > 1");
|
||||
HALT
|
||||
END;
|
||||
IF x = 1.0D THEN
|
||||
x := longhalfpi;
|
||||
IF x > 0.5D THEN
|
||||
big := TRUE;
|
||||
IF x > 1.0D THEN
|
||||
Message("arcsin or arccos: argument > 1");
|
||||
HALT
|
||||
END;
|
||||
g := 0.5D - 0.5D * x;
|
||||
x := -longsqrt(g);
|
||||
x := x + x;
|
||||
ELSE
|
||||
x := longarctan(x/longsqrt(1.0D - x*x));
|
||||
big := FALSE;
|
||||
g := x * x;
|
||||
END;
|
||||
IF negative THEN x := -x; END;
|
||||
IF cosfl THEN
|
||||
RETURN longhalfpi - x;
|
||||
x := x + x * g *
|
||||
((((p4*g+p3)*g+p2)*g+p1)*g+p0)/(((((q5*g+q4)*g+q3)*g+q2)*g+q1)*g+q0);
|
||||
IF cosfl AND NOT negative THEN x := -x END;
|
||||
IF cosfl = NOT big THEN
|
||||
x := (x + longquartpi) + longquartpi;
|
||||
ELSIF cosfl AND negative AND big THEN
|
||||
x := (x + longhalfpi) + longhalfpi;
|
||||
END;
|
||||
IF negative AND NOT cosfl THEN x := -x END;
|
||||
RETURN x;
|
||||
END arcsincos;
|
||||
|
||||
|
@ -354,115 +407,65 @@ IMPLEMENTATION MODULE Mathlib;
|
|||
RETURN SHORT(longarctan(LONG(x)));
|
||||
END arctan;
|
||||
|
||||
TYPE
|
||||
precomputed = RECORD
|
||||
X: LONGREAL; (* partition point *)
|
||||
arctan: LONGREAL; (* arctan of evaluation node *)
|
||||
OneOverXn: LONGREAL; (* 1/xn *)
|
||||
OneOverXnSquarePlusone: LONGREAL; (* ... *)
|
||||
END;
|
||||
|
||||
VAR arctaninit: BOOLEAN;
|
||||
precomp : ARRAY[0..4] OF precomputed;
|
||||
VAR A: ARRAY[0..3] OF LONGREAL;
|
||||
arctaninit: BOOLEAN;
|
||||
|
||||
PROCEDURE longarctan(x: LONGREAL): LONGREAL;
|
||||
(* The interval [0, infinity) is treated as follows:
|
||||
Define partition points Xi
|
||||
X0 = 0
|
||||
X1 = tan(pi/16)
|
||||
X2 = tan(3pi/16)
|
||||
X3 = tan(5pi/16)
|
||||
X4 = tan(7pi/16)
|
||||
X5 = infinity
|
||||
and evaluation nodes xi
|
||||
x2 = tan(2pi/16)
|
||||
x3 = tan(4pi/16)
|
||||
x4 = tan(6pi/16)
|
||||
x5 = infinity
|
||||
An argument x in [Xn-1, Xn] is now reduced to an argument
|
||||
t in [-X1, X1] by the following formulas:
|
||||
|
||||
t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x)
|
||||
|
||||
arctan(x) = arctan(xi) + arctan(t)
|
||||
|
||||
For the interval [0, tan(p/16)] an approximation is used:
|
||||
arctan(x) = x * P(x*x)/Q(x*x)
|
||||
(* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*)
|
||||
(* Hart & Cheney # 5037 *)
|
||||
CONST
|
||||
p0 = 0.7698297257888171026986294745D+03;
|
||||
p1 = 0.1557282793158363491416585283D+04;
|
||||
p2 = 0.1033384651675161628243434662D+04;
|
||||
p3 = 0.2485841954911840502660889866D+03;
|
||||
p4 = 0.1566564964979791769948970100D+02;
|
||||
q0 = 0.7698297257888171026986294911D+03;
|
||||
q1 = 0.1813892701754635858982709369D+04;
|
||||
q2 = 0.1484049607102276827437401170D+04;
|
||||
q3 = 0.4904645326203706217748848797D+03;
|
||||
q4 = 0.5593479839280348664778328000D+02;
|
||||
q5 = 0.1000000000000000000000000000D+01;
|
||||
p0 = -0.13688768894191926929D+02;
|
||||
p1 = -0.20505855195861651981D+02;
|
||||
p2 = -0.84946240351320683534D+01;
|
||||
p3 = -0.83758299368150059274D+00;
|
||||
q0 = 0.41066306682575781263D+02;
|
||||
q1 = 0.86157349597130242515D+02;
|
||||
q2 = 0.59578436142597344465D+02;
|
||||
q3 = 0.15024001160028576121D+02;
|
||||
q4 = 1.0D;
|
||||
VAR
|
||||
xsqr: LONGREAL;
|
||||
g: LONGREAL;
|
||||
neg: BOOLEAN;
|
||||
i: INTEGER;
|
||||
n: INTEGER;
|
||||
BEGIN
|
||||
IF NOT arctaninit THEN
|
||||
arctaninit := TRUE;
|
||||
WITH precomp[0] DO
|
||||
X := 0.19891236737965800691159762264467622D;
|
||||
arctan := 0.0D;
|
||||
OneOverXn := 0.0D;
|
||||
OneOverXnSquarePlusone := 0.0D;
|
||||
END;
|
||||
WITH precomp[1] DO
|
||||
X := 0.66817863791929891999775768652308076D;
|
||||
arctan := 0.39269908169872415480783042290993786D;
|
||||
OneOverXn := 2.41421356237309504880168872420969808D;
|
||||
OneOverXnSquarePlusone := 6.82842712474619009760337744841939616D;
|
||||
END;
|
||||
WITH precomp[2] DO
|
||||
X := 1.49660576266548901760113513494247691D;
|
||||
arctan := longquartpi;
|
||||
OneOverXn := 1.0;
|
||||
OneOverXnSquarePlusone := 2.0;
|
||||
END;
|
||||
WITH precomp[3] DO
|
||||
X := 5.02733949212584810451497507106407238D;
|
||||
arctan := 1.17809724509617246442349126872981358D;
|
||||
OneOverXn := 0.41421356237309504880168872420969808D;
|
||||
OneOverXnSquarePlusone := 1.17157287525380998659662255158060384D;
|
||||
END;
|
||||
WITH precomp[4] DO
|
||||
X := 0.0D;
|
||||
arctan := longhalfpi;
|
||||
OneOverXn := 0.0D;
|
||||
OneOverXnSquarePlusone := 1.0D;
|
||||
END;
|
||||
A[0] := 0.0D;
|
||||
A[1] := 0.52359877559829887307710723554658381D; (* p1/6 *)
|
||||
A[2] := longhalfpi;
|
||||
A[3] := 1.04719755119659774615421446109316763D; (* pi/3 *)
|
||||
END;
|
||||
neg := FALSE;
|
||||
IF x < 0.0D THEN
|
||||
neg := TRUE;
|
||||
x := -x;
|
||||
END;
|
||||
i := 0;
|
||||
WHILE (i <= 3) AND (x >= precomp[i].X) DO
|
||||
INC(i);
|
||||
END;
|
||||
IF (i # 0) THEN
|
||||
WITH precomp[i] DO
|
||||
x := arctan + longarctan(OneOverXn-OneOverXnSquarePlusone/(OneOverXn+x));
|
||||
END
|
||||
IF x > 1.0D THEN
|
||||
x := 1.0D/x;
|
||||
n := 2
|
||||
ELSE
|
||||
xsqr := x * x;
|
||||
x := x * ((((p4*xsqr+p3)*xsqr+p2)*xsqr+p1)*xsqr+p0) /
|
||||
(((((q5*xsqr+q4)*xsqr+q3)*xsqr+q2)*xsqr+q1)*xsqr+q0);
|
||||
n := 0
|
||||
END;
|
||||
IF x > 0.26794919243112270647D (* 2-sqrt(3) *) THEN
|
||||
INC(n);
|
||||
x := (((0.73205080756887729353D*x-0.5D)-0.5D)+x)/
|
||||
(1.73205080756887729353D + x);
|
||||
END;
|
||||
g := x*x;
|
||||
x := x + x * g * (((p3*g+p2)*g+p1)*g+p0) / ((((q4*g+q3)*g+q2)*g+q1)*g+q0);
|
||||
IF n > 1 THEN x := -x END;
|
||||
x := x + A[n];
|
||||
IF neg THEN RETURN -x; END;
|
||||
RETURN x;
|
||||
END longarctan;
|
||||
|
||||
(* hyperbolic functions *)
|
||||
(* The C math library has better implementations for some of these, but
|
||||
they depend on some properties of the floating point implementation,
|
||||
and, for now, we don't want that in the Modula-2 system.
|
||||
*)
|
||||
|
||||
PROCEDURE sinh(x: REAL): REAL;
|
||||
BEGIN
|
||||
|
|
Loading…
Reference in a new issue