Changed to be printed on laserprinter.

Removed paragraph about bug, since bug is now solved
This commit is contained in:
sater 1985-12-04 15:52:51 +00:00
parent a91e33ce96
commit 5c0660793d

View file

@ -57,7 +57,7 @@ and the assembly code of the machine at hand.
.NH 1
What has changed since version 1 ?
.PP
This chapter can be skipped by anyone not familiar with the first version.
This section can be skipped by anyone not familiar with the first version.
It is not needed to understand the current version.
.PP
This paper describes the second version of the code generator system.
@ -116,39 +116,40 @@ Alternatively one can think of the real stack as an infinite extension
at the bottom of the fake stack.
Both ways, the concatenation of the real stack and the fake stack
will be the stack as it would have been on a real EM machine (see figure).
.KF
.DS L
.ta 8 16 24 32 40 48 56 64 72
EM machine target machine
| | | |
| | | |
| | | |
| | | |
| | | real stack |
| | | | |
| | | | | growing
| EM stack | | | |
| | |_______________| \e|/
| | | |
| | | |
| | | |
| | | fake stack |
| | | |
|_______________| |_______________|
.TS
center;
cw(3.5c) cw(3c) cw(3.5c)
cw(3.5c) cw(3c) cw(3.5c)
|cw(3.5c)| cw(3c) |cw(3.5c)| .
EM machine target machine
.I
Relation between EM stack, real stack and fake stack.
.R
.DE
.KE
real stack
stack
grows
EM stack \s+2\(br\s0
\s+2\(br\s0
\s+2\(br\s0 _
\s+2\(br\s0
\s+2\(da\s0
fake stack
_ _
.T&
ci s s.
Relation between EM stack, real stack and fake stack.
.TE
During code generation tokens will be kept on the fake stack as long
as possible but when they are moved to the real stack,
by generating code for the push,
all tokens above\u*\d
all tokens above\v'-.25m'\(dg\v'.25m'
.FS
* in this document the stack is assumed to grow downwards,
\(dg in this document the stack is assumed to grow downwards,
although the top of the stack will mean the first element that will
be popped.
.FE
@ -297,8 +298,9 @@ at will to improve legibility.
Identifiers used in the table have the same syntax as C identifiers,
upper and lower case considered different, all characters significant.
Here is a list of reserved words; all of these are unavailable as identifiers.
.DS L
.ta 14 28 42 56
.TS
box;
l l l l l.
ADDR STACK from reg_any test
COERCIONS STACKINGRULES gen reg_float to
INSTRUCTIONS TESTS highw reg_loop ufit
@ -309,7 +311,7 @@ PROPERTIES cost loww reusing
REGISTERS defined move rom
SETS exact pat samesign
SIZEFACTOR example proc sfit
.DE
.TE
C style comments are accepted.
.DS
/* this is a comment */
@ -330,7 +332,7 @@ NAME=value
.DE
value being an integer or string.
Three constants must be defined here:
.IP EM_WSIZE 10
.IP EM_WSIZE 14
Number of bytes in a machine word.
This is the number of bytes
a \fBloc\fP instruction will put on the stack.
@ -368,13 +370,13 @@ FORMAT= "0%o"
to satisfy the old UNIX assembler that reads octal unless followed by
a period, and the ACK assembler that follows C conventions.
.PP
Tables under control of programs like
Tables under control of source code control systems like
.I sccs
or
.I rcs
can put their id-string here, for example
.DS
rcsid="$Header$"
rcsid="$\&Header$"
.DE
These strings, like all strings in the table, will eventually
end up in the binary code generator produced.
@ -385,6 +387,7 @@ same order of magnitude.
This can be done as
.DS
SIZEFACTOR = C\d3\u/C\d4\u
.sp
TIMEFACTOR = C\d1\u/C\d2\u
.DE
Above numbers must be read as rational numbers.
@ -403,32 +406,28 @@ It consists of a list of user-defined
identifiers optionally followed by the size
of the property in parentheses, default EM_WSIZE.
Example for the PDP-11:
.DS
.ta 8 16 24 32 40
PROPERTIES /* The header word for this section */
.TS
l l.
PROPERTIES /* The header word for this section */
GENREG /* All PDP registers */
REG /* Normal registers (allocatable) */
ODDREG /* All odd registers (allocatable) */
REGPAIR(4) /* Register pairs for division */
FLTREG(4) /* Floating point registers */
DBLREG(8) /* Same, double precision */
GENFREG(4) /* generic floating point */
GENDREG(8) /* Same, double precision */
FLTREGPAIR(8) /* register pair for modf */
DBLREGPAIR(16) /* Same, double precision */
LOCALBASE /* Guess what */
GENREG /* All PDP registers */
REG /* Normal registers (allocatable) */
ODDREG /* All odd registers (allocatable) */
REGPAIR(4) /* Register pairs for division */
FLTREG(4) /* Floating point registers */
DBLREG(8) /* Same, double precision */
GENFREG(4) /* generic floating point */
GENDREG(8) /* Same, double precision */
FLTREGPAIR(8) /* register pair for modf */
DBLREGPAIR(16) /* Same, double precision */
LOCALBASE /* Guess what */
STACKPOINTER
PROGRAMCOUNTER
.DE
.TE
Registers are allocated by asking for a property,
so if for some reason in later parts of the table
one particular register must be allocated it
has to have a unique property.
.PP
There is a bug in the codegenerator that can be circumvented by
providing a dummy property at the start of the property list.
The example has not been updated to show this.
.NH 2
Register definition
.PP
@ -442,22 +441,22 @@ Syntax:
<register> : ident [ '(' string ')' ] [ '=' ident [ '+' ident ] ]
.DE
Example for the PDP-11:
.DS L
.ta 8 16 24 32 40 48 56 64
.TS
l l.
REGISTERS
r0,r2,r4 : GENREG,REG.
r1,r3 : GENREG,REG,ODDREG.
r01("r0")=r0+r1 : REGPAIR.
fr0("r0"),fr1("r1"),fr2("r2"),fr3("r3") : GENFREG,FLTREG.
r0,r2,r4 : GENREG,REG.
r1,r3 : GENREG,REG,ODDREG.
r01("r0")=r0+r1 : REGPAIR.
fr0("r0"),fr1("r1"),fr2("r2"),fr3("r3") : GENFREG,FLTREG.
dr0("r0")=fr0,dr1("r1")=fr1,
dr2("r2")=fr2,dr3("r3")=fr3 : GENDREG,DBLREG.
dr2("r2")=fr2,dr3("r3")=fr3 : GENDREG,DBLREG.
fr01("r0")=fr0+fr1,fr23("r2")=fr2+fr3 : FLTREGPAIR.
dr01("r0")=dr0+dr1,dr23("r2")=dr2+dr3 : DBLREGPAIR.
lb("r5") : GENREG,LOCALBASE.
sp : GENREG,STACKPOINTER.
pc : GENREG,PROGRAMCOUNTER.
.DE
lb("r5") : GENREG,LOCALBASE.
sp : GENREG,STACKPOINTER.
pc : GENREG,PROGRAMCOUNTER.
.TE
.PP
The names in the left hand lists are names of registers as used
in the table.
@ -529,20 +528,21 @@ Tokens should usually be declared for every addressing mode
of the machine at hand and for every size directly usable in
a machine instruction.
Example for the PDP-11 (incomplete):
.DS L
.TS
l l.
TOKENS
const2 = { INT num; } 2 cost(2,300) "$" num .
addr_local = { INT ind; } 2 .
addr_external = { ADDR off; } 2 "$" off.
const2 = { INT num; } 2 cost(2,300) "$" num .
addr_local = { INT ind; } 2 .
addr_external = { ADDR off; } 2 "$" off.
regdef2 = { GENREG reg; } 2 "*" reg.
regind2 = { GENREG reg; ADDR off; } 2 off "(" reg ")" .
reginddef2 = { GENREG reg; ADDR off; } 2 "*" off "(" reg ")" .
regdef2 = { GENREG reg; } 2 "*" reg.
regind2 = { GENREG reg; ADDR off; } 2 off "(" reg ")" .
reginddef2 = { GENREG reg; ADDR off; } 2 "*" off "(" reg ")" .
regconst2 = { GENREG reg; ADDR off; } 2 .
relative2 = { ADDR off; } 2 off .
reldef2 = { ADDR off; } 2 "*" off.
.DE
reldef2 = { ADDR off; } 2 "*" off.
.TE
.PP
Types allowed in the struct are ADDR, INT and all register properties.
The type ADDR means a string and an integer,
@ -624,21 +624,21 @@ in the remainder of the table,
but for clarity it is usually better not to.
.LP
Example for the PDP-11 (incomplete):
.DS L
.ta 8 16 24 32 40 48 56 64
.TS
l l.
SETS
src2 = GENREG + regdef2 + regind2 + reginddef2 + relative2 +
reldef2 + addr_external + const2 + LOCAL + ILOCAL +
autodec + autoinc .
dst2 = src2 - ( const2 + addr_external ) .
xsrc2 = src2 + ftoint .
src1 = regdef1 + regind1 + reginddef1 + relative1 + reldef1 .
dst1 = src1 .
src1or2 = src1 + src2 .
src4 = relative4 + regdef4 + DLOCAL + regind4 .
dst4 = src4 .
.DE
src2 = GENREG + regdef2 + regind2 + reginddef2 + relative2 +
\h'\w'= 'u'reldef2 + addr_external + const2 + LOCAL + ILOCAL +
\h'\w'= 'u'autodec + autoinc .
dst2 = src2 - ( const2 + addr_external ) .
xsrc2 = src2 + ftoint .
src1 = regdef1 + regind1 + reginddef1 + relative1 + reldef1 .
dst1 = src1 .
src1or2 = src1 + src2 .
src4 = relative4 + regdef4 + DLOCAL + regind4 .
dst4 = src4 .
.TE
Permissible in the set construction are all the usual set operators, i.e.
.IP +
set union
@ -1252,7 +1252,7 @@ The author of
.I cgg
could not get
.I yacc
to be silent without it.
to accept his syntax without it.
Sorry about this.
.IP 2)
a
@ -1370,20 +1370,19 @@ A list of examples for the PDP-11 is given here.
Far from being complete it gives examples of most kinds
of instructions.
.DS
.ta 8 16 24 32 40 48 56 64
pat loc yields {const2, $1}
.ta 7.5c
pat loc yields {const2, $1}
pat ldc yields {const2, loww($1)}
{const2, highw($1)}
pat ldc yields {const2, loww($1)} {const2, highw($1)}
.DE
These simple patterns just push one or more tokens onto the fake stack.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat lof
with REG yields {regind2,%1,$1}
with exact regconst2 yields {regind2,%1.reg,$1+%1.off}
with exact addr_external yields {relative2,$1+%1.off}
with exact addr_local yields {LOCAL, %1.ind + $1,2}
with REG yields {regind2,%1,$1}
with exact regconst2 yields {regind2,%1.reg,$1+%1.off}
with exact addr_external yields {relative2,$1+%1.off}
with exact addr_local yields {LOCAL, %1.ind + $1,2}
.DE
This pattern shows the possibility to do different things
depending on the fake stack contents,
@ -1393,13 +1392,12 @@ not preceded by
that can always be taken after a coercion,
if necessary.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat lxl $1>3
uses REG={LOCAL, SL, 2},
REG={const2,$1-1}
uses REG={LOCAL, SL, 2}, REG={const2,$1-1}
gen 1:
move {regind2,%a, SL},%a
sob %b,{label,1b} yields %a
sob %b,{label,1b} yields %a
.DE
This rule shows register allocation with initialisation,
and the use of a temporary label.
@ -1408,7 +1406,7 @@ of the static link,
that is pushed by the Pascal compiler as the last argument of
a function.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat stf
with regconst2 xsrc2
kills allexeptcon
@ -1423,7 +1421,7 @@ part in a store instruction.
The set allexeptcon contains all tokens that can be the destination
of an indirect store.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat sde
with exact FLTREG
kills posextern
@ -1449,51 +1447,52 @@ The third rule is taken by default,
resulting in two separate stores,
nothing better exists on the PDP-11.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat sbi $1==2
with src2 REG
gen sub %1,%2 yields %2
gen sub %1,%2 yields %2
with exact REG src2-REG
gen sub %2,%1
neg %1 yields %1
neg %1 yields %1
.DE
This rule for
.I sbi
has a normal first part,
and a hand optimized special case as it's second part.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat mli $1==2
with ODDREG src2
gen mul %2,%1 yields %1
gen mul %2,%1 yields %1
with src2 ODDREG
gen mul %1,%2 yields %2
gen mul %1,%2 yields %2
.DE
This shows the general property for rules with commutative
operators,
heuristics or look ahead will have to decide which rule is the best.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat loc sli $1==1 && $2==2
with REG
gen asl %1 yields %1
gen asl %1 yields %1
.DE
A simple rule involving a longer EM-pattern,
to make use of a specialized instruction available.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat loc loc cii $1==1 && $2==2
with src1or2
uses reusing %1,REG
gen movb %1,%a yields %a
gen movb %1,%a yields %a
.DE
A somewhat more complicated example of the same.
Note the
.I reusing
clause.
.DS
.ta 8 16 24 32 40 48 56 64
pat loc loc loc cii $1>=0 && $2==2 && $3==4 leaving loc $1 loc 0
.ta 7.5c
pat loc loc loc cii $1>=0 && $2==2 && $3==4
leaving loc $1 loc 0
.DE
Shows a trivial example of EM-replacement.
This is a rule that could be done by the
@ -1502,40 +1501,40 @@ if word order in longs was defined in EM.
On a `big-endian' machine the two replacement
instructions would be the other way around.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat and $1==2
with const2 REG
gen bic {const2,~%1.num},%2 yields %2
gen bic {const2,~%1.num},%2 yields %2
with REG const2
gen bic {const2,~%2.num},%1 yields %1
gen bic {const2,~%2.num},%1 yields %1
with REG REG
gen com %1
bic %1,%2 yields %2
bic %1,%2 yields %2
.DE
Shows the way you have to twist the table,
if an
.I and -instruction
is not available on your machine.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat set $1==2
with REG
uses REG={const2,1}
gen ash %1,%a yields %a
gen ash %1,%a yields %a
.DE
Shows the building of a word-size set.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat lae aar $2==2 && rom($1,3)==1 && rom($1,1)==0
leaving adi 2
leaving adi 2
pat lae aar $2==2 && rom($1,3)==1 && rom($1,1)!=0
leaving adi 2 adp 0-rom($1,1)
leaving adi 2 adp 0-rom($1,1)
.DE
Two rules showing the use of the rom pseudo function,
and some array optimalisation.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat bra
with STACK
gen jbr {label, $1}
@ -1544,7 +1543,7 @@ A simple jump.
The stack pattern guarantees that everything will be stacked
before the jump is taken.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat cal
with STACK
gen jsr pc,{label, $1}
@ -1552,9 +1551,9 @@ gen jsr pc,{label, $1}
A simple call.
Same comments as previous rule.
.DS
.ta 8 16 24 32 40 48 56 64
pat lfr $1==2 yields r0
pat lfr $1==4 yields r1 r0
.ta 7.5c
pat lfr $1==2 yields r0
pat lfr $1==4 yields r1 r0
.DE
Shows the return area conventions of the PDP-11 table.
At this point a reminder:
@ -1564,7 +1563,7 @@ instruction, and some other instructions must leave
the function return area intact.
See the defining document for EM for exact information.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat ret $1==0
with STACK
gen mov lb,sp
@ -1578,7 +1577,7 @@ In a table with register variables the
part would just contain
.I return .
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat blm
with REG REG
uses REG={const2,$1/2}
@ -1596,15 +1595,15 @@ It uses the marriage thesis from Hall,
a thesis from combinatorial mathematics,
to accomplish this.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
pat exg $1==2
with src2 src2 yields %1 %2
with src2 src2 yields %1 %2
.DE
This rule shows the exchanging of two elements on the fake stack.
.NH 2
Code rules using procedures
.PP
To start this chapter it must be admitted at once that the
To start this section it must be admitted at once that the
word procedure is chosen here mainly for it's advertising
value.
It more resembles a glorified goto but this of course can
@ -1664,12 +1663,12 @@ The string `*' can be used as an equivalent for `[1]'.
Just in case this is not clear, here is an example for
a procedure to increment/decrement a register.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
incop REG:rw:cc . /* in the INSTRUCTIONS part of course */
proc incdec
with REG
gen incop* %1 yields %1
gen incop* %1 yields %1
.DE
The procedure is called with parameter "inc" or "dec".
.PP
@ -1680,18 +1679,18 @@ call <identifier> '(' string [ ',' string ] ')'
.DE
which leads to the following large example:
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
proc bxx example beq
with src2 src2 STACK
gen cmp %2,%1
jxx* {label, $1}
pat blt call bxx("jlt")
pat ble call bxx("jle")
pat beq call bxx("jeq")
pat bne call bxx("jne")
pat bgt call bxx("jgt")
pat bge call bxx("jge")
pat blt call bxx("jlt")
pat ble call bxx("jle")
pat beq call bxx("jeq")
pat bne call bxx("jne")
pat bgt call bxx("jgt")
pat bge call bxx("jge")
.DE
.NH 2
Move definitions
@ -1856,38 +1855,38 @@ The next part of the table defines the coercions that are possible
on the defined tokens.
Example for the PDP-11:
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
COERCIONS
from STACK
uses REG
gen mov {autoinc,sp},%a yields %a
gen mov {autoinc,sp},%a yields %a
from STACK
uses DBLREG
gen movf {autoinc,sp},%a yields %a
gen movf {autoinc,sp},%a yields %a
from STACK
uses REGPAIR
gen mov {autoinc,sp},%a.1
mov {autoinc,sp},%a.2 yields %a
mov {autoinc,sp},%a.2 yields %a
.DE
These three coercions just deliver a certain type
of register by popping it from the real stack.
.DS
.ta 8 16 24 32 40 48 56 64
from LOCAL yields {regind2,lb,%1.ind}
.ta 7.5c
from LOCAL yields {regind2,lb,%1.ind}
from DLOCAL yields {regind4,lb,%1.ind}
from DLOCAL yields {regind4,lb,%1.ind}
from REG yields {regconst2, %1, 0}
from REG yields {regconst2, %1, 0}
.DE
These three are zero-cost rewriting rules.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
from regconst2 %1.off==1
uses reusing %1,REG=%1.reg
gen inc %a yields %a
gen inc %a yields %a
from regconst2
uses reusing %1,REG=%1.reg
@ -1896,7 +1895,7 @@ gen add {addr_external, %1.off},%a yields %a
from addr_local
uses REG
gen mov lb,%a
add {const2, %1.ind},%a yields %a
add {const2, %1.ind},%a yields %a
.DE
The last three are three different cases of the coercion
register+constant to register.
@ -1904,19 +1903,19 @@ Only in the last case is it always necessary to allocate
an extra register,
since arithmetic on the localbase is unthinkable.
.DS
.ta 8 16 24 32 40 48 56 64
.ta 7.5c
from xsrc2
uses reusing %1, REG=%1 yields %a
uses reusing %1, REG=%1 yields %a
from longf4
uses FLTREG=%1 yields %a
uses FLTREG=%1 yields %a
from double8
uses DBLREG=%1 yields %a
uses DBLREG=%1 yields %a
from src1
uses REG={const2,0}
gen bisb %1,%a yields %a
gen bisb %1,%a yields %a
.DE
These examples show the coercion of different
tokens to a register of the needed type.
@ -1925,14 +1924,14 @@ ensure bytes are not sign-extended.
In EM it is defined that the result of a \fBloi\fP\ 1
instruction is an integer in the range 0..255.
.DS
.ta 8 16 24 32 40 48 56 64
from REGPAIR yields %1.2 %1.1
.ta 7.5c
from REGPAIR yields %1.2 %1.1
from regind4 yields {regind2,%1.reg,2+%1.off}
{regind2,%1.reg,%1.off}
from regind4 yields {regind2,%1.reg,2+%1.off}
{regind2,%1.reg,%1.off}
from relative4 yields {relative2,2+%1.off}
{relative2,%1.off}
from relative4 yields {relative2,2+%1.off}
{relative2,%1.off}
.DE
The last examples are splitting rules.
.PP
@ -2086,23 +2085,23 @@ If omitted no initialization is assumed.
.NH 3
Example mach.h for the PDP-11
.DS L
.ta 8 16 24 32 40 48 56
.ta 4c
#define ex_ap(y) fprintf(codefile,"\et.globl %s\en",y)
#define in_ap(y) /* nothing */
#define newplb(x) fprintf(codefile,"%s:\en",x)
#define newilb(x) fprintf(codefile,"%s:\en",x)
#define newdlb(x) fprintf(codefile,"%s:\en",x)
#define dlbdlb(x,y) fprintf(codefile,"%s=%s\en",x,y)
#define dlbdlb(x,y) fprintf(codefile,"%s=%s\en",x,y)
#define newlbss(l,x) fprintf(codefile,"%s:.=.+%d.\en",l,x);
#define cst_fmt "$%d."
#define off_fmt "%d."
#define ilb_fmt "I%02x%x"
#define dlb_fmt "_%d"
#define hol_fmt "hol%d"
#define cst_fmt "$%d."
#define off_fmt "%d."
#define ilb_fmt "I%02x%x"
#define dlb_fmt "_%d"
#define hol_fmt "hol%d"
#define hol_off "%d.+hol%d"
#define hol_off "%d.+hol%d"
#define con_cst(x) fprintf(codefile,"%d.\en",x)
#define con_ilb(x) fprintf(codefile,"%s\en",x)
@ -2157,7 +2156,7 @@ mes(w_mesno)
This function is called when a
.B mes
pseudo is seen that is not handled by the machine independent part.
Example below shows all you probably have to know about that.
The example below shows all you probably have to know about that.
.IP -
segname[]
.br
@ -2216,7 +2215,7 @@ Example mach.c for the PDP-11
As an example of the sort of code expected,
the mach.c for the PDP-11 is presented here.
.DS L
.ta 8 16 24 32 40 48 56 64
.ta 0.5i 1i 1.5i 2i 2.5i 3i 3.5i 4i 4.5i
/*
* machine dependent back end routines for the PDP-11
*/