Initial revision

This commit is contained in:
ceriel 1985-10-02 22:20:04 +00:00
parent 40915d76c6
commit 73153b484b
2 changed files with 1689 additions and 0 deletions

812
util/LLgen/src/compute.c Normal file
View file

@ -0,0 +1,812 @@
/*
* (c) copyright 1983 by the Vrije Universiteit, Amsterdam, The Netherlands.
*
* This product is part of the Amsterdam Compiler Kit.
*
* Permission to use, sell, duplicate or disclose this software must be
* obtained in writing. Requests for such permissions may be sent to
*
* Dr. Andrew S. Tanenbaum
* Wiskundig Seminarium
* Vrije Universiteit
* Postbox 7161
* 1007 MC Amsterdam
* The Netherlands
*
*/
/*
* L L G E N
*
* An Extended LL(1) Parser Generator
*
* Author : Ceriel J.H. Jacobs
*/
/*
* compute.c
* Defines routines to compute FIRST, FOLLOW etc.
* Also checks the continuation grammar from the specified grammar.
*/
# include "types.h"
# include "tunable.h"
# include "extern.h"
# include "sets.h"
# include "assert.h"
# ifndef NDEBUG
# include "io.h"
# endif
# ifndef NORCSID
static string rcsid2 = "$Header$";
# endif
p_set setalloc();
/* Defined in this file : */
extern createsets();
STATIC walk();
extern co_empty();
extern empty();
extern co_first();
STATIC first();
extern co_follow();
STATIC follow();
extern co_symb();
STATIC co_dirsymb();
STATIC co_others();
STATIC do_checkdefault();
STATIC checkdefault();
extern co_contains();
STATIC do_contains();
STATIC contains();
extern co_safes();
STATIC int do_safes();
createsets() {
/*
* Allocate space for the sets
*/
register p_nont p;
for (p = nonterms; p < maxnt; p++) {
p->n_first = setalloc(setsize);
p->n_follow = setalloc(setsize);
walk(p->n_rule);
}
}
STATIC
walk(p) register p_gram p; {
/*
* Walk through the grammar rule p, allocating sets
*/
for (;;) {
switch (g_gettype(p)) {
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
q->t_first = setalloc(setsize);
q->t_follow = setalloc(setsize);
walk(q->t_rule);
break; }
case ALTERNATION : {
register p_link l;
l = (p_link) pentry[g_getcont(p)];
l->l_symbs = setalloc(setsize);
walk(l->l_rule);
break; }
case EORULE :
return;
}
p++;
}
}
co_empty() {
/*
* Which nonterminals produce the empty string ?
*/
register int change;
register p_nont p;
change = 1;
while (change) {
change = 0;
for (p=nonterms; p < maxnt; p++) {
if ((!(p->n_flags & EMPTY)) && empty(p->n_rule)) {
p->n_flags |= EMPTY;
change = 1;
}
}
}
}
empty(p) register p_gram p; {
/*
* Does the rule pointed to by p produce empty ?
*/
for (;;) {
switch (g_gettype(p)) {
case EORULE :
return 1;
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
if (r_getkind(&(q->t_reps)) == STAR
|| r_getkind(&(q->t_reps)) == OPT
|| empty(q->t_rule) ) break;
return 0; }
case ALTERNATION :
if (empty(((p_link)pentry[g_getcont(p)])->l_rule)) {
return 1;
}
if (g_gettype(p+1) == EORULE) return 0;
break;
case NONTERM :
if (nonterms[g_getnont(p)].n_flags & EMPTY) {
break;
}
/* Fall through */
case TERMINAL :
return 0;
}
p++;
}
}
co_first() {
/*
* Compute the FIRST set for each nonterminal
*/
register p_nont p;
register int change;
change = 1;
while (change) {
change = 0;
for (p = nonterms; p < maxnt; p++) {
if (first(p->n_first,p->n_rule,0)) change = 1;
}
}
}
STATIC
first(setp,p,flag) p_set setp; register p_gram p; {
/*
* Compute the FIRST set of rule p.
* If flag = 0, also the first sets for terms and alternations in
* the rule p are computed.
* The FIRST set is put in setp.
* return 1 if any of the sets changed
*/
register s; /* Will gather return value */
int noenter;/* when set, unables entering of elements into
* setp. This is necessary to walk through the
* rest of rule p.
*/
s = 0;
noenter = 0;
for (;;) {
switch (g_gettype(p)) {
case EORULE :
return s;
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
if (flag == 0) s |= first(q->t_first,q->t_rule,0);
if (!noenter) s |= setunion(setp,q->t_first,setsize);
p++;
if (r_getkind(&(q->t_reps)) == STAR
|| r_getkind(&(q->t_reps)) == OPT
|| empty(q->t_rule) ) continue;
break; }
case ALTERNATION : {
register p_link l;
l = (p_link) pentry[g_getcont(p)];
if (flag == 0) s |= first(l->l_symbs,l->l_rule,0);
if (noenter == 0) {
s |= setunion(setp,l->l_symbs,setsize);
}
if (g_gettype(p+1) == EORULE) return s;
}
/* Fall Through */
case ACTION :
p++;
continue;
case TERMINAL :
if ((noenter == 0) && !IN(setp,g_getcont(p))) {
s = 1;
PUTIN(setp,g_getcont(p));
}
p++;
break;
case NONTERM : {
register p_nont n;
n = &nonterms[g_getnont(p)];
if (noenter == 0) {
s |= setunion(setp,n->n_first,setsize);
if (ntneeded && ! NTIN(setp,n-nonterms)) {
s = 1;
NTPUTIN(setp,n-nonterms);
}
}
p++;
if (n->n_flags & EMPTY) continue;
break; }
}
if (flag == 0) {
noenter = 1;
continue;
}
return s;
}
}
co_follow() {
/*
* Compute the follow set for each nonterminal
*/
register p_nont p;
register change;
register i;
p_start st;
/*
* First put EOFILE in the follow set of the start symbols
*/
for (st = start; st; st = st->ff_next) PUTIN(st->ff_nont->n_follow,0);
change = 1;
i = 1;
while (change) {
change = 0;
for (p = nonterms; p < maxnt; p++) {
if (follow(p->n_follow,p->n_rule,i)) change = 1;
}
i = 0;
}
}
STATIC
follow(setp,p,flag) p_set setp; register p_gram p; {
/*
* setp is the follow set for the rule p.
* Compute the follow sets in the rule p from this set.
* Return 1 if any set changed
* flag controls the use of "first" in the computation.
* It should be 1 the first time a rule is done, 0 otherwise.
*/
register s; /* Will gather return value */
s = 0;
for (;;) {
switch (g_gettype(p)) {
case EORULE :
return s;
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
if (empty(p+1)) {
/*
* If what follows the term can be empty,
* everything that can follow the whole
* rule can also follow the term
*/
s |= setunion(q->t_follow,setp,setsize);
}
/*
* Everything that can start the rest of the rule
* can follow the term
*/
if (flag) s |= first(q->t_follow,p+1,1);
if (r_getkind(&(q->t_reps)) == STAR
|| r_getkind(&(q->t_reps)) == PLUS
|| r_getnum(&(q->t_reps)) ) {
/*
* If the term involves a repetition
* of possibly more than one,
* everything that can start the term
* can also follow it.
*/
s |= follow(q->t_first,q->t_rule,flag);
}
/*
* Now propagate the set computed sofar
*/
s |= follow(q->t_follow, q->t_rule,flag);
break; }
case ALTERNATION :
/*
* Just propagate setp
*/
s |= follow(setp,((p_link)pentry[g_getcont(p)])->l_rule,
flag);
break;
case NONTERM : {
register p_nont n;
n = &nonterms[g_getnont(p)];
if (flag) s |= first(n->n_follow,p+1,1);
if (empty(p+1)) {
/*
* If the rest of p can produce empty,
* everything that follows p can follow
* the nonterminal
*/
s |= setunion(n->n_follow,setp,setsize);
}
break; }
}
p++;
}
}
co_symb() {
/*
* Compute the sets which determine which alternative to choose
* in case of a choice
* Also check the continuation grammar and see if rules do scan
* ahead.
*/
register p_nont p;
for (p = nonterms; p < maxnt; p++) {
co_dirsymb(p->n_follow,p->n_rule);
}
for (p = nonterms; p < maxnt; p++) {
do_checkdefault(p);
}
}
STATIC
co_dirsymb(setp,p) p_set setp; register p_gram p; {
/*
* Walk the rule p, doing the work for alternations
*/
register p_gram s = 0;
for (;;) {
switch (g_gettype(p)) {
case EORULE :
return;
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
co_dirsymb(q->t_follow,q->t_rule);
break; }
case ALTERNATION : {
register p_link l;
/*
* Save first alternative
*/
if (!s) s = p;
l = (p_link) pentry[g_getcont(p)];
l->l_others = setalloc(setsize);
co_dirsymb(setp,l->l_rule);
if (empty(l->l_rule)) {
/*
* If the rule can produce empty, everything
* that follows it can also start it
*/
setunion(l->l_symbs,setp,setsize);
}
if (g_gettype(p+1) == EORULE) {
/*
* Every alternation is implemented as a
* choice between two alternatives :
* this one or one of the following.
* The l_others set will contain the starters
* of the other alternatives
*/
co_others(s);
return;
} }
}
p++;
}
}
STATIC
co_others(p) register p_gram p; {
/*
* compute the l_others-sets for the list of alternatives
* indicated by p
*/
register p_link l1,l2;
l1 = (p_link) pentry[g_getcont(p)];
p++;
l2 = (p_link) pentry[g_getcont(p)];
setunion(l1->l_others,l2->l_symbs,setsize);
if (g_gettype(p+1) != EORULE) {
/*
* First compute l2->l_others
*/
co_others(p);
/*
* and then l1->l_others
*/
setunion(l1->l_others,l2->l_others,setsize);
}
}
STATIC
do_checkdefault(p) register p_nont p; {
/*
* check the continuation rule for nonterminal p, unless
* this is already being(!) done
*/
if (p->n_flags & BUSY) {
/*
* Error situation, recursion in continuation grammar
*/
p->n_flags ^= (RECURSIVE|BUSY);
return;
}
if (p->n_flags & CONTIN) {
/*
* Was already done
*/
return;
}
/*
* Now mark it as busy, and check the rule
*/
p->n_flags |= BUSY;
checkdefault(p->n_rule);
/*
* Now release the busy mark, and mark it as done
*/
p->n_flags ^= (CONTIN|BUSY);
return;
}
STATIC
checkdefault(p) register p_gram p; {
/*
* Walk grammar rule p, checking the continuation grammar
*/
register p_link l;
register p_term q;
for (;;) {
switch (g_gettype(p)) {
case EORULE :
return;
case ALTERNATION :
l = (p_link) pentry[g_getcont(p)];
if (l->l_flag & DEF) {
/*
* This alternative belongs to the
* continuation grammar, so check it
*/
checkdefault(l->l_rule);
return;
}
break;
case TERM :
q = (p_term) pentry[g_getcont(p)];
/*
* First check the rest of the rule
*/
checkdefault(p+1);
/*
* Now check the term if it belongs to the
* continuation grammar
*/
if (r_getkind(&(q->t_reps))==FIXED ||
r_getkind(&(q->t_reps))==PLUS) {
checkdefault(q->t_rule);
return;
}
/*
* Here we have OPT or STAR
* Only in the continuation grammar if %persistent
*/
if (q->t_flags & PERSISTENT) {
checkdefault(q->t_rule);
}
return;
case NONTERM :
/*
* Check the continuation grammar for this nonterminal.
* Note that the nonterminal we are working on is
* marked as busy, so that direct or indirect recursion
* can be detected
*/
do_checkdefault(&nonterms[g_getnont(p)]);
break;
}
p++;
}
}
co_contains() {
/*
* Compute the contains sets
*/
register p_nont p;
register p_set dummy;
for (p = nonterms; p < maxnt; p++) do_contains(p);
dummy = setalloc(setsize);
# ifndef NDEBUG
if (debug) fputs("Contains 1 done\n", stderr);
# endif
free(dummy);
for (p = nonterms; p < maxnt; p++) contains(p->n_rule, (p_set) 0);
# ifndef NDEBUG
if (debug) fputs("Contains 2 done\n", stderr);
# endif
dummy = setalloc(setsize);
free(dummy);
}
STATIC
do_contains(n) register p_nont n; {
/*
* Compute the total set of symbols that nonterminal n can
* produce
*/
if (n->n_contains == 0) {
n->n_contains = setalloc(setsize);
contains(n->n_rule,n->n_contains);
/*
* If the rule can produce empty, delete all symbols that
* can follow the rule as well as be in the rule.
* This is needed because the contains-set may only contain
* symbols that are guaranteed to be eaten by the rule!
* Otherwise, the generated parser may loop forever
*/
if (n->n_flags & EMPTY) {
setminus(n->n_contains,n->n_follow,setsize);
}
/*
* But the symbols that can start the rule are always
* eaten
*/
setunion(n->n_contains,n->n_first,setsize);
}
}
STATIC
contains(p,set) register p_gram p; register p_set set; {
/*
* Does the real computation of the contains-sets
*/
for (;;) {
switch (g_gettype(p)) {
case EORULE :
return;
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
if ((q->t_flags & PERSISTENT) ||
r_getkind(&(q->t_reps)) == PLUS ||
r_getkind(&(q->t_reps)) == FIXED) {
/*
* In these cases, the term belongs to the
* continuation grammar.
* Otherwise, q->t_contains is just
* q->t_first
*/
if (!q->t_contains) {
q->t_contains = setalloc(setsize);
}
contains(q->t_rule,q->t_contains);
if (empty(q->t_rule)) {
/*
* Same trouble as mentioned in the
* routine do_contains
*/
setminus(q->t_contains,q->t_follow,
setsize);
}
setunion(q->t_contains,q->t_first,setsize);
} else {
contains(q->t_rule, (p_set) 0);
q->t_contains = q->t_first;
}
if (set) setunion(set,q->t_contains,setsize);
break; }
case NONTERM : {
register p_nont n;
n = &nonterms[g_getnont(p)];
do_contains(n);
if(set) setunion(set, n->n_contains,setsize);
break; }
case ALTERNATION : {
register p_link l;
l = (p_link) pentry[g_getcont(p)];
contains(l->l_rule,
(l->l_flag & DEF) ? set : (p_set) 0);
break; }
case TERMINAL : {
register hulp;
if (set) {
hulp = g_getcont(p);
assert(hulp < nterminals);
PUTIN(set,hulp);
}}
}
p++;
}
}
static int change;
co_safes() {
/*
* Compute the safety of each nonterminal and term.
* The safety gives an answer to the question whether a scan is done,
* and how it should be handled.
*/
register p_nont p;
register i;
register p_start st;
for (p = nonterms; p < maxnt; p++) {
/*
* Don't know anything yet
*/
setntsafe(&(p->n_flags), NOSAFETY);
}
for (st = start; st; st = st->ff_next) {
/*
* But start symbols are called with lookahead done
*/
p = st->ff_nont;
setntsafe(&(p->n_flags),SCANDONE);
}
change = 1;
while (change) {
change = 0;
for (p = nonterms; p < maxnt; p++) {
i = getntsafe(p->n_flags);
if (i == NOSAFETY) {
change = 1;
continue;
}
if (do_safes(p->n_rule, i) == 2 &&
!(p->n_flags & NNOSCAN)) {
p->n_flags |= NNOSCAN;
change = 1;
}
}
}
}
STATIC int
do_safes(p,safe) register p_gram p; {
/*
* Walk the grammar rule, doing the computation described in the
* comment of the procedure above this one.
*/
register retval;
if (safe == NOSCANDONE) retval = 2;
else retval = 1;
for (;;) {
switch (g_gettype(p)) {
case ACTION:
p++;
continue;
case TERMINAL:
retval = 2;
break;
case TERM : {
register p_term q;
int i,rep;
q = (p_term) pentry[g_getcont(p)];
i = r_getnum(&(q->t_reps));
rep = r_getkind(&(q->t_reps));
retval = do_safes(q->t_rule,
t_safety(rep,i,q->t_flags&PERSISTENT,safe));
if (retval == 2 && (!(q->t_flags & TNOSCAN))) {
q->t_flags |= TNOSCAN;
}
if (rep != FIXED || retval == 0) retval = 1;
break; }
case ALTERNATION : {
register p_link l;
int f, i;
f = 1;
while (g_gettype(p) == ALTERNATION) {
l = (p_link) pentry[g_getcont(p)];
if (safe && (l->l_flag & DEF)) {
i = do_safes(l->l_rule,SAFESCANDONE);
}
else i = do_safes(l->l_rule,SAFE);
if (f) retval = i;
else retval &= i;
p++;
f = 0;
}
return retval; }
case NONTERM : {
register p_nont n;
int nsafe;
n = &nonterms[g_getnont(p)];
nsafe = getntsafe(n->n_flags);
if (!(n->n_flags & NNOSCAN)) retval = 1;
else retval = 2;
if (safe == nsafe) break;
if (nsafe == NOSAFETY) {
change = 1;
setntsafe(&(n->n_flags), safe);
break;
}
if (safe == NOSCANDONE || nsafe == NOSCANDONE) {
if (nsafe != SCANDONE) {
change = 1;
setntsafe(&(n->n_flags), SCANDONE);
}
break;
}
if (safe > nsafe) {
setntsafe(&(n->n_flags), safe);
change = 1;
}
break; }
case EORULE :
return retval;
}
p++;
if (retval == 1) safe = SCANDONE;
else safe = NOSCANDONE;
}
}
t_safety(rep, count, persistent, safety) {
switch(rep) {
default:
assert(0);
case OPT:
if (!persistent) return SAFE;
if (safety < SAFESCANDONE) return safety;
return SAFESCANDONE;
case STAR:
if (persistent) return SAFESCANDONE;
return SAFE;
case PLUS:
if (safety == NOSCANDONE) safety = SCANDONE;
if (persistent) {
if (safety > SAFESCANDONE) return safety;
return SAFESCANDONE;
}
if (safety > SAFE) return safety;
return SAFE;
case FIXED:
if (!count) {
if (safety == NOSCANDONE) safety = SCANDONE;
return safety;
}
return SCANDONE;
}
/* NOTREACHED */
}

877
util/LLgen/src/gencode.c Normal file
View file

@ -0,0 +1,877 @@
/*
* (c) copyright 1983 by the Vrije Universiteit, Amsterdam, The Netherlands.
*
* This product is part of the Amsterdam Compiler Kit.
*
* Permission to use, sell, duplicate or disclose this software must be
* obtained in writing. Requests for such permissions may be sent to
*
* Dr. Andrew S. Tanenbaum
* Wiskundig Seminarium
* Vrije Universiteit
* Postbox 7161
* 1007 MC Amsterdam
* The Netherlands
*
*/
/*
* L L G E N
*
* An Extended LL(1) Parser Generator
*
* Author : Ceriel J.H. Jacobs
*/
/*
* gencode.c
* Defines the routine "gencode", which generates the parser
* we wanted so badly.
* This file is a mess, it should be cleaned up some time.
*/
# include "types.h"
# include "io.h"
# include "tunable.h"
# include "extern.h"
# include "sets.h"
# include "assert.h"
# ifndef NORCSID
static string rcsid3 = "$Header$";
# endif NORCSID
/*
* Some codestrings used more than once
*/
static string c_arrend = "0 };\n";
static string c_close = "}\n";
static string c_LLptrmin = "LLptr++;\n";
static string c_break = "break;\n";
static string c_read = "LLread();\n";
/* Some constants used for reading from the action file */
# define ENDDECL 0400
# define IDENT 0401
static int nlabel; /* count for the generation of labels */
static int nvar; /* count for generation of variables */
static int pushlist[100];
static int *ppushlist;
static int *lists,*maxlists,*plists;
p_mem ralloc(),alloc();
/* In this file the following routines are defined: */
extern gencode();
STATIC opentemp();
STATIC geninclude();
STATIC genrecovery();
STATIC string genname();
STATIC generate();
STATIC prset();
STATIC macro();
STATIC controlline();
STATIC getparams();
STATIC gettok();
STATIC rulecode();
STATIC int dopush();
STATIC pushcode();
STATIC getaction();
STATIC codeforterm();
STATIC genifhead();
STATIC gencases();
STATIC genpush();
/* Macro to print a terminal */
# define PTERM(f,p) fprintf(f,(p)->h_num<0400?"'%s'":"%s",(p)->h_name)
gencode(argc) {
register p_file p = files;
/* Generate include file Lpars.h */
geninclude();
/* Set up for code generation */
if ((fact = fopen(f_temp,"r")) == NULL) {
fatal(0,e_noopen,f_temp);
}
lists = (int *) alloc(50 * sizeof(int));
plists = lists;
maxlists = lists+49;
/* For every source file .... */
while (argc--) {
/* Open temporary */
f_input = p->f_name;
opentemp(f_input);
/* generate code ... */
copyfile(0);
generate(p);
getaction(2);
if (ferror(fpars) != 0) {
fatal(0,"Write error on temporary");
}
fclose(fpars);
/* And install */
install(genname(p->f_name),p->f_name);
p++;
}
genrecovery();
}
STATIC
opentemp(str) string str; {
if ((fpars = fopen(f_pars,"w")) == NULL) {
fatal(0,e_noopen,f_pars);
}
fprintf(fpars,LLgenid,str ? str : ".");
}
STATIC
geninclude() {
register p_entry p;
register FILE *f;
opentemp((string) 0);
f = fpars;
for (p = h_entry; p < max_t_ent; p++) {
if (p->h_num >= 0400) {
fprintf(f,"# define %s %d\n", p->h_name,p->h_num);
}
}
if (ferror(f) != 0) {
fatal(0,"write error on temporary");
}
fclose(f);
install(HFILE, (string) 0);
}
STATIC
genrecovery() {
register FILE *f;
register p_entry t;
register int i;
register int *q;
int index[256+NTERMINALS];
register p_start st;
opentemp((string) 0);
f = fpars;
copyfile(0);
/* Now generate the routines that call the startsymbols */
fputs("#define LLSTSIZ 1024\n",f);
for (i = 1, st = start; st; st = st->ff_next) {
i++;
fputs(st->ff_name, f);
fputs("() {\n\tint LLstack[LLSTSIZ];\n\tLLnewlevel(LLstack);\n\tLLread();\n", f);
if (g_gettype(st->ff_nont->n_rule) == ALTERNATION) {
fprintf(f, "\tLLxx.LLx_p--; *LLxx.LLx_p = %d;\n",
findindex(&(st->ff_nont->n_contains)));
}
fprintf(f, "\tL%d_%s();\n",
st->ff_nont-nonterms,
(min_nt_ent+(st->ff_nont-nonterms))->h_name);
if (st->ff_nont->n_flags & NNOSCAN) {
fputs("\tLLscan(EOFILE);\n",f);
}
else fputs("\tif (LLsymb != EOFILE) LLerror(EOFILE);\n",f);
fputs("\tLLoldlevel();\n}\n",f);
}
fprintf(f,"#define LL_MAX %d\n#define LL_LEXI %s\n", i, lexical);
fputs("static short LLlists[] = {\n", f);
/* Now generate lists */
q = lists;
while (q < plists) {
fprintf(f,"%d,\n",*q++);
}
fputs(c_arrend, f);
/* Now generate the sets */
fputs("char LLsets[] = {\n",f);
for (i = 0; i < maxptr-setptr; i++) prset(setptr[i]);
fputs(c_arrend, f);
for (q = index; q <= &index[255 + NTERMINALS];) *q++ = -1;
for (t = h_entry; t < max_t_ent; t++) {
index[t->h_num] = t - h_entry;
}
fputs("short LLindex[] = {\n",f);
for (q = index; q <= &index[assval-1]; q++) {
fprintf(f, "%d,\n", *q);
}
fputs(c_arrend, f);
copyfile(1);
if (ferror(f) != 0) {
fatal(0,"write error on temporary");
}
fclose(f);
install(RFILE, (string) 0);
}
STATIC
generate(f) p_file f; {
/*
* Generates a parsing routine for every nonterminal
*/
register short *s;
register p_nont p;
register FILE *fd;
int i;
p_first ff;
int mustpop;
/* Generate first sets */
for (ff = f->f_firsts; ff; ff = ff->ff_next) {
macro(ff->ff_name,ff->ff_nont);
}
/* For every nonterminal generate a function */
fd = fpars;
for (s = f->f_start; s <= f->f_end; s++) {
p = &nonterms[*s];
/* Generate functions in the order in which the nonterminals
* were defined in the grammar. This is important, because
* of synchronisation with the action file
*/
while (p->n_count--) getaction(1);
if (p->n_flags & PARAMS) controlline();
fprintf(fd,"L%d_%s (",*s,(min_nt_ent + *s)->h_name);
if (p->n_flags & PARAMS) getparams();
else fputs(") {\n", fd);
fputs("register struct LLxx *LLx = &LLxx;\n#ifdef lint\nLLx=LLx;\n#endif\n", fd);
if (p->n_flags & LOCALS) getaction(1);
i = getntsafe(p->n_flags);
mustpop = 0;
if (g_gettype(p->n_rule) == ALTERNATION) {
mustpop = 1;
if (i == NOSCANDONE) {
fputs(c_read, fd);
i = SCANDONE;
}
}
nlabel = 1;
rulecode(p->n_rule,
i,
!(p->n_flags & NNOSCAN), mustpop);
fputs(c_close, fd);
}
}
STATIC
prset(p) p_set p; {
register int k;
register unsigned i;
int j;
j = NBYTES(nterminals);
for (;;) {
i = (unsigned) *p++;
for (k = 0; k < sizeof(int); k++) {
fprintf(fpars,"0%o,",(i & 0377));
i >>= 8;
if (--j == 0) {
fputs("\n",fpars);
return;
}
}
}
/* NOTREACHED */
}
STATIC
macro(s,n) string s; p_nont n; {
register FILE *f;
int i;
f = fpars;
i = findindex(&(n->n_first));
fprintf(f,"#define %s(x) ", s);
if (i < 0) {
fprintf(f, "((x) == %d)\n", -i);
return;
}
fprintf(f,"LLfirst((x), %d)\n", i);
}
STATIC
controlline() {
/* Copy a compiler control line */
register int l;
register FILE *f1,*f2;
f1 = fact; f2 = fpars;
l = getc(f1);
assert(l == '\0');
l = getc(f1); putc(l,f2);
assert( l == '#' ) ;
do {
l = getc(f1);
putc(l,f2);
} while ( l != '\n' ) ;
}
STATIC
getparams() {
/* getparams is called if a nonterminal has parameters. The names
* of the parameters have to be found, and they should be declared
*/
long off;
register int l;
register FILE *f;
long ftell();
char first;
first = ' ';
f = fpars;
/* save offset in file to be able to copy the declaration later */
off = ftell(fact);
/* First pass through declaration, find the parameter names */
while ((l = gettok()) != ENDDECL) {
if (l == ';' || l == ',') {
/*
* The last identifier found before a ';' or a ','
* must be a parameter
*/
fprintf(f,"%c%s", first, ltext);
first = ',';
}
}
fputs(") ",f);
/*
* Now copy the declarations
*/
fseek(fact,off,0);
getaction(0);
fputs(" {\n",f);
}
STATIC
gettok() {
/* Read from the action file. */
register int ch;
register string c;
register FILE *f;
f = fact;
ch = getc(f);
switch(ch) {
case '\n':
ch = getc(f);
if (ch != EOF) {
ungetc(ch,f);
if (ch != '\0') return '\n';
}
return ENDDECL;
case '\0':
ungetc(ch,f);
/* Fall through */
case EOF :
return ENDDECL;
default :
if (isalpha(ch) || ch == '_') {
c = ltext;
while (isalnum(ch) || ch == '_') {
*c++ = ch;
if (c-ltext >= LTEXTSZ) --c;
ch = getc(f);
}
if (ch != EOF) ungetc(ch,f);
*c = '\0';
return IDENT;
}
return ch;
}
}
STATIC
rulecode(p,safety,mustscan,mustpop) register p_gram p; {
/*
* Code for a production rule.
*/
register int toplevel = 1;
register FILE *f;
/*
* First generate code to push the contains sets of this rule
* on a stack
*/
ppushlist = pushlist;
if (dopush(p,safety,1) > 0) pushcode();
f = fpars;
for (;;) {
switch (g_gettype(p)) {
case EORULE :
if (mustscan && safety == NOSCANDONE) {
fputs(c_read,f);
}
return;
case TERMINAL : {
register p_entry t;
t = &h_entry[g_getcont(p)];
if (toplevel == 0 && safety != NOSCANDONE) {
fputs(c_LLptrmin,f);
}
if (safety == SAFE) {
fputs("LL_SAFE(",f);
}
else if (safety <= SCANDONE) {
fputs("LL_SCANDONE(",f);
}
else if (safety == NOSCANDONE) {
if (toplevel != 0) {
fputs("LL_T_NOSCANDONE(", f);
}
else fputs("LL_N_NOSCANDONE(", f);
}
PTERM(f,t);
fputs(");\n", f);
if (safety == SAFE && toplevel > 0) {
safety = NOSCANDONE;
toplevel = -1;
p++;
continue;
}
safety = NOSCANDONE;
break; }
case NONTERM : {
p_entry t;
register p_nont n;
int params;
n = &nonterms[g_getnont(p)];
t= min_nt_ent+(n-nonterms);
if (safety == NOSCANDONE &&
getntsafe(n->n_flags) < NOSCANDONE) fputs(c_read, f);
if (toplevel == 0 &&
g_gettype(n->n_rule) != ALTERNATION) {
fputs(c_LLptrmin, f);
}
params = g_getnpar(p);
if (params) controlline();
fprintf(f,"L%d_%s(",n-nonterms, t->h_name);
if (params) getaction(0);
fputs(");\n",f);
safety = NOSCANDONE;
if (!(n->n_flags & NNOSCAN)) safety = SCANDONE;
break; }
case TERM :
safety = codeforterm((p_term) pentry[g_getcont(p)],
safety,
toplevel);
break;
case ACTION :
getaction(1);
p++;
continue;
case ALTERNATION :
alternation(p, safety, mustscan,mustpop, 0);
return;
}
p++;
toplevel = 0;
}
}
alternation(p, safety, mustscan, mustpop, lb) register p_gram p; {
register FILE *f = fpars;
register p_link l;
int hulp, hulp1,hulp2;
int var;
int haddefault = 0;
int unsafe = 1;
p_set set;
p_set setalloc();
assert(safety < NOSCANDONE);
l = (p_link) pentry[g_getcont(p)];
hulp = nlabel++;
hulp1 = nlabel++;
hulp2 = nlabel++;
var = nvar++;
if (!lb) lb = hulp1;
if (safety <= SAFESCANDONE) unsafe = 0;
if (unsafe && hulp1 == lb) fprintf(f,"L_%d: ", hulp1);
else if (mustpop) {
mustpop = 0;
fputs(c_LLptrmin, f);
}
if (unsafe) {
fprintf(f,"{ int LL_%d = 0;\n", var);
}
fputs("switch(LLcsymb) {\n", f);
while (g_gettype(p) != EORULE) {
l = (p_link) pentry[g_getcont(p)];
if (unsafe && (l->l_flag & DEF)) {
haddefault = 1;
fprintf(f,
"default: if (!LL_%d && LLskip()) {LL_%d = 1; goto L_%d;}\ngoto L_%d;\n",
var, var, lb, hulp2);
}
if (l->l_flag & COND) {
set = setalloc(tsetsize);
setunion(set, l->l_others, tsetsize);
setintersect(set, l->l_symbs, tsetsize);
setminus(l->l_symbs, set, tsetsize);
setminus(l->l_others, set, tsetsize);
gencases(set);
free((p_mem) set);
controlline();
fputs("if (!",f);
getaction(0);
fprintf(f,") goto L_%d;\n", hulp);
}
if (!unsafe && (l->l_flag & DEF)) {
fputs("default:\n", f);
haddefault = 1;
}
else gencases(l->l_symbs);
if (l->l_flag & DEF) {
if (unsafe) {
fprintf(f,"L_%d: ;\n", hulp2);
}
if (mustpop) fputs(c_LLptrmin, f);
rulecode(l->l_rule, SAFESCANDONE, mustscan, 0);
}
else {
if (mustpop) fputs(c_LLptrmin, f);
rulecode(l->l_rule, SAFE, mustscan, 0);
}
fputs(c_break,f);
if (l->l_flag & COND) {
if (!haddefault) {
fputs("default:\n", f);
}
else {
gencases(l->l_others);
safety = SAFE;
}
fprintf(f,"L_%d : ;\n",hulp);
p++;
if (!unsafe && g_gettype(p+1) == EORULE) {
if (mustpop) fputs(c_LLptrmin, f);
rulecode(((p_link)pentry[g_getcont(p)])->l_rule,
safety,mustscan,0);
}
else alternation(p,safety,mustscan,mustpop,lb);
break;
}
p++;
}
fputs(c_close, f);
if (unsafe) fputs(c_close, f);
return;
}
STATIC int
dopush(p,safety,toplevel) register p_gram p; {
/*
* The safety only matters if toplevel != 0
*/
register int count = 0;
for (;;) {
switch(g_gettype(p)) {
case EORULE :
case ALTERNATION :
return count;
case TERM : {
register p_term q;
q = (p_term) pentry[g_getcont(p)];
count += dopush(p+1,SCANDONE,0);
*ppushlist++ = findindex(&(q->t_contains));
return count+1; }
case TERMINAL :
if (toplevel > 0 && safety == SAFE) {
count += dopush(p+1,NOSCANDONE,-1);
}
else count += dopush(p+1, NOSCANDONE, 0);
if (toplevel != 0) {
return count;
}
*ppushlist++ = -h_entry[g_getcont(p)].h_num;
return count + 1;
case NONTERM : {
register p_nont n;
n = &nonterms[g_getnont(p)];
count += dopush(p+1, SCANDONE, 0);
if (toplevel == 0 ||
g_gettype(n->n_rule) == ALTERNATION) {
*ppushlist++ = findindex(&n->n_contains);
count++;
}
return count; }
}
p++;
}
}
# define max(a,b) ((a) < (b) ? (b) : (a))
STATIC
pushcode() {
register int i,j,k;
register int *p = pushlist;
if ((i = ppushlist - p) == 0) return;
if (i <= 2) {
genpush(p[0]);
if (i == 2) genpush(p[1]);
return;
}
fprintf(fpars,"\LLlpush(%d, %d);\n",plists-lists, i);
if (maxlists - plists < i) {
j = plists - lists;
k = maxlists-lists+max(i+1,50);
lists = (int *) ralloc( (p_mem)lists,
(unsigned)(k+1)*sizeof(int));
plists = lists+j;
maxlists = lists+k;
}
while (i--) {
*plists++ = *p++;
}
}
STATIC
getaction(flag) {
/* Read an action from the action file.
* flag = 1 if it is an action,
* 0 when reading parameters
*/
register int match,ch;
register FILE *f;
register int newline;
int mark = 0;
if (flag == 1) {
controlline();
}
f = fpars;
newline = 0;
for (;;) {
ch = gettok();
switch(ch) {
case ENDDECL:
if (flag != 2) break;
ch = getc(fact);
assert(ch == '\0');
fputs("\n",f);
if (mark) return;
mark = 1;
continue;
case '\n':
newline = 1;
break;
case '\'' :
case '"' :
if (newline) {
newline = 0;
}
match = ch;
putc(ch,f);
while (ch = getc(fact)) {
if (ch == match) break;
if (ch == '\\') {
putc(ch,f);
ch = getc(fact);
}
putc(ch,f);
}
break;
case IDENT :
if (newline) {
newline = 0;
}
fputs(ltext,f);
continue;
}
mark = 0;
if (ch == ENDDECL) break;
if (newline && ch != '\n') {
newline = 0;
}
putc(ch,f);
}
if (flag) fputs("\n",f);
}
STATIC
codeforterm(q,safety,toplevel) register p_term q; {
/*
* Generate code for a term
*/
register FILE *f;
register int i;
register int rep;
int persistent;
int noscan;
f = fpars;
i = r_getnum(&(q->t_reps));
rep = r_getkind(&(q->t_reps));
persistent = (q->t_flags & PERSISTENT);
noscan = (q->t_flags & TNOSCAN);
if (safety == NOSCANDONE && (rep != FIXED || i == 0)) {
fputs(c_read, f);
if (rep == FIXED && g_gettype(q->t_rule) != ALTERNATION) {
fputs(c_LLptrmin, f);
}
}
if (i) {
/* N > 0, so generate fixed forloop */
fprintf(f,"{\nregister LL_i = %d;\n",i);
fputs("for (;;) {\nif (!LL_i--) {\nLLptr++;\n", f);
fputs("break;\n}\n", f);
if (rep == FIXED) {
if (noscan && safety == NOSCANDONE) {
fputs(c_read,f);
}
}
}
else if (rep != OPT && rep != FIXED) {
/* '+' or '*', so generate infinite loop */
fputs("for (;;) {\n",f);
}
if (rep == STAR || rep == OPT) {
genifhead(q,rep);
}
rulecode(q->t_rule,t_safety(rep,i,persistent,safety),
rep != FIXED || !noscan,
rep == FIXED && i == 0 && g_gettype(q->t_rule) == ALTERNATION);
/* in the case of '+', the if is after the code for the rule */
if (rep == PLUS) {
if (!persistent) {
fprintf(f, "*LLptr = %d;\n", findindex(&(q->t_first)));
}
genifhead(q,rep);
}
if (rep != OPT && rep != FIXED) fputs("continue;\n", f);
if (rep != FIXED) {
fputs(c_close, f); /* Close switch */
if (rep != OPT) {
fputs("break;\n", f);
}
}
if (rep != OPT && (rep != FIXED || i > 0)) {
fputs(c_close, f); /* Close for */
if (i > 0) {
fputs(c_close, f);/* Close Register ... */
}
}
if (rep != FIXED || !noscan) return SCANDONE;
return NOSCANDONE;
}
STATIC
genifhead(q,rep) register p_term q; {
/*
* Generate if statement for term q
*/
register FILE *f;
p_set p1;
p_set setalloc();
int hulp, hulp1;
f = fpars;
hulp = nlabel++;
hulp1 = nlabel++;
fprintf(f, "L_%d : switch(LLcsymb) {\n", hulp);
if (q->t_flags & RESOLVER) {
p1 = setalloc(tsetsize);
setunion(p1,q->t_first,tsetsize);
setintersect(p1,q->t_follow,tsetsize);
/*
* p1 now points to a set containing the conflicting
* symbols
*/
setminus(q->t_first, p1, tsetsize);
setminus(q->t_follow, p1, tsetsize);
gencases(p1);
free((p_mem) p1);
controlline();
fputs("if (", f);
getaction(0);
fprintf(f, ") goto L_%d;\n", hulp1);
}
gencases(q->t_follow);
fputs("LLptr++; break;\n", f);
fprintf(f, "default: if (!LLnext()) goto L_%d;\n", hulp);
gencases(q->t_first);
if (q->t_flags & RESOLVER) {
fprintf(f, "L_%d : ;\n", hulp1);
}
if (rep == OPT) {
fputs(c_LLptrmin,f);
}
}
STATIC
gencases(setp) register p_set setp; {
/*
* setp points to a bitset indicating which cases must
* be generated.
* YECH, the PCC compiler does not accept many cases without statements
* inbetween, so after every case label an empty statement is
* generated.
* The C-grammar used by PCC is really stupid on this point :
* it contains the rule
* statement : label statement
* which is right-recursive, and as is well known, LALR parsers don't
* handle these things very good.
* The grammar should have been written :
* labeledstatement : labels statement ;
* labels : labels label | ;
*/
register p_entry p;
register i;
p = h_entry;
for (i=0; i < nterminals; i++) {
if (IN(setp,i)) {
fprintf(fpars,
p->h_num<0400 ? "case /* '%s' */ %d : ;\n"
: "case /* %s */ %d : ;\n",
p->h_name, i);
}
p++;
}
}
STATIC
genpush(d) {
fprintf(fpars, "LLptr--;\n*LLptr = %d;\n",d);
}
static char namebuf[20];
STATIC string
genname(s) string s; {
/*
* Generate a target file name from the
* source file name s.
*/
register string c,d;
c = namebuf;
while (*s) {
if (*s == '/') {
while (*s == '/') s++;
if (*s) c = namebuf;
else break;
}
*c++ = *s++;
}
for (d = c; --d > namebuf;) if (*d == '.') break;
if (d == namebuf) d = c;
if (d >= &namebuf[12]) {
fatal(0,"%s : filename too long",namebuf);
}
*d++ = '.';
*d++ = 'c';
*d = '\0';
return namebuf;
}