Added Mathlib; MathLib0 now uses Mathlib

This commit is contained in:
ceriel 1987-05-27 10:05:01 +00:00
parent 791ec39e57
commit 86c5c56a38
10 changed files with 591 additions and 351 deletions

View file

@ -6,6 +6,7 @@ Conversion.def
FIFFEF.def
InOut.def
Makefile
Mathlib.def
MathLib0.def
Processes.def
RealInOut.def

View file

@ -1,11 +1,12 @@
(*$Foreign*)
DEFINITION MODULE FIFFEF;
PROCEDURE FIF(arg1, arg2: REAL; VAR intres: REAL) : REAL;
PROCEDURE FIF(arg1, arg2: LONGREAL; VAR intres: LONGREAL) : LONGREAL;
(* multiplies arg1 and arg2, and returns the integer part of the
result in "intres" and the fraction part as the function result.
*)
PROCEDURE FEF(arg: REAL; VAR exp: INTEGER) : REAL;
PROCEDURE FEF(arg: LONGREAL; VAR exp: INTEGER) : LONGREAL;
(* splits "arg" in mantissa and a base-2 exponent.
The mantissa is returned, and the exponent is left in "exp".
*)

View file

@ -2,50 +2,45 @@
mes 2,EM_WSIZE,EM_PSIZE
#define ARG1 0
#define ARG2 EM_FSIZE
#define IRES 2*EM_FSIZE
#define ARG2 EM_DSIZE
#define IRES 2*EM_DSIZE
; FIFFEF_FIF is called with three parameters:
; FIF is called with three parameters:
; - address of integer part result (IRES)
; - float two (ARG2)
; - float one (ARG1)
; and returns an EM_FSIZE-byte floating point number
; and returns an EM_DSIZE-byte floating point number
; Definition:
; PROCEDURE FIF(ARG1, ARG2: REAL; VAR IRES: REAL) : REAL;
; PROCEDURE FIF(ARG1, ARG2: LONGREAL; VAR IRES: LONGREAL) : LONGREAL;
exp $FIFFEF_FIF
pro $FIFFEF_FIF,0
exp $FIF
pro $FIF,0
lal 0
loi 2*EM_FSIZE
fif EM_FSIZE
loi 2*EM_DSIZE
fif EM_DSIZE
lal IRES
loi EM_PSIZE
sti EM_FSIZE
ret EM_FSIZE
sti EM_DSIZE
ret EM_DSIZE
end ?
#define FARG 0
#define ERES EM_FSIZE
#define ERES EM_DSIZE
; FIFFEF_FEF is called with two parameters:
; FEF is called with two parameters:
; - address of base 2 exponent result (ERES)
; - floating point number to be split (FARG)
; and returns an EM_FSIZE-byte floating point number (the mantissa)
; and returns an EM_DSIZE-byte floating point number (the mantissa)
; Definition:
; PROCEDURE FEF(FARG: REAL; VAR ERES: integer): REAL;
; PROCEDURE FEF(FARG: LONGREAL; VAR ERES: integer): LONGREAL;
exp $FIFFEF_FEF
pro $FIFFEF_FEF,0
exp $FEF
pro $FEF,0
lal FARG
loi EM_FSIZE
fef EM_FSIZE
loi EM_DSIZE
fef EM_DSIZE
lal ERES
loi EM_PSIZE
sti EM_WSIZE
ret EM_FSIZE
end ?
exp $FIFFEF
pro $FIFFEF,0
ret 0
ret EM_DSIZE
end ?

View file

@ -1,18 +1,19 @@
tail_m2.a
RealInOut.mod
InOut.mod
Terminal.mod
TTY.mod
ASCII.mod
FIFFEF.e
MathLib0.mod
Mathlib.mod
Processes.mod
RealConver.mod
RealInOut.mod
Storage.mod
Conversion.mod
Semaphores.mod
random.mod
Strings.mod
FIFFEF.e
Arguments.c
catch.c
hol0.e

View file

@ -4,7 +4,8 @@ DEFDIR = $(HOME)/lib/m2
SOURCES = ASCII.def FIFFEF.def MathLib0.def Processes.def \
RealInOut.def Storage.def Arguments.def Conversion.def \
random.def Semaphores.def Unix.def RealConver.def \
Strings.def InOut.def Terminal.def TTY.def
Strings.def InOut.def Terminal.def TTY.def \
Mathlib.def
all:

View file

@ -1,4 +1,8 @@
DEFINITION MODULE MathLib0;
(*
Exists for compatibility.
A more elaborate math lib can be found in Mathlib.def
*)
PROCEDURE sqrt(x : REAL) : REAL;

View file

@ -1,326 +1,35 @@
IMPLEMENTATION MODULE MathLib0;
(* Rewritten in Modula-2.
The originals came from the Pascal runtime library.
*)
FROM FIFFEF IMPORT FIF, FEF;
CONST
HUGE = 1.701411733192644270E38;
PROCEDURE sinus(arg: REAL; quad: INTEGER): REAL;
(* Coefficients for sin/cos are #3370 from Hart & Cheney (18.80D).
*)
CONST
twoopi = 0.63661977236758134308;
p0 = 0.1357884097877375669092680E8;
p1 = -0.4942908100902844161158627E7;
p2 = 0.4401030535375266501944918E6;
p3 = -0.1384727249982452873054457E5;
p4 = 0.1459688406665768722226959E3;
q0 = 0.8644558652922534429915149E7;
q1 = 0.4081792252343299749395779E6;
q2 = 0.9463096101538208180571257E4;
q3 = 0.1326534908786136358911494E3;
VAR
e, f: REAL;
ysq: REAL;
x,y: REAL;
k: INTEGER;
temp1, temp2: REAL;
BEGIN
x := arg;
IF x < 0.0 THEN
x := -x;
quad := quad + 2;
END;
x := x*twoopi; (*underflow?*)
IF x>32764.0 THEN
y := FIF(x, 10.0, e);
e := e + FLOAT(quad);
temp1 := FIF(0.25, e, f);
quad := TRUNC(e - 4.0*f);
ELSE
k := TRUNC(x);
y := x - FLOAT(k);
quad := (quad + k) MOD 4;
END;
IF ODD(quad) THEN
y := 1.0-y;
END;
IF quad > 1 THEN
y := -y;
END;
ysq := y*y;
temp1 := ((((p4*ysq+p3)*ysq+p2)*ysq+p1)*ysq+p0)*y;
temp2 := ((((ysq+q3)*ysq+q2)*ysq+q1)*ysq+q0);
RETURN temp1/temp2;
END sinus;
IMPORT Mathlib;
PROCEDURE cos(arg: REAL): REAL;
BEGIN
IF arg < 0.0 THEN
arg := -arg;
END;
RETURN sinus(arg, 1);
RETURN Mathlib.cos(arg);
END cos;
PROCEDURE sin(arg: REAL): REAL;
BEGIN
RETURN sinus(arg, 0);
RETURN Mathlib.sin(arg);
END sin;
(*
floating-point arctangent
arctan returns the value of the arctangent of its
argument in the range [-pi/2,pi/2].
coefficients are #5077 from Hart & Cheney. (19.56D)
*)
CONST
sq2p1 = 2.414213562373095048802E0;
sq2m1 = 0.414213562373095048802E0;
pio2 = 1.570796326794896619231E0;
pio4 = 0.785398163397448309615E0;
p4 = 0.161536412982230228262E2;
p3 = 0.26842548195503973794141E3;
p2 = 0.11530293515404850115428136E4;
p1 = 0.178040631643319697105464587E4;
p0 = 0.89678597403663861959987488E3;
q4 = 0.5895697050844462222791E2;
q3 = 0.536265374031215315104235E3;
q2 = 0.16667838148816337184521798E4;
q1 = 0.207933497444540981287275926E4;
q0 = 0.89678597403663861962481162E3;
(*
xatan evaluates a series valid in the
range [-0.414...,+0.414...].
*)
PROCEDURE xatan(arg: REAL) : REAL;
VAR
argsq, value: REAL;
BEGIN
argsq := arg*arg;
value := ((((p4*argsq + p3)*argsq + p2)*argsq + p1)*argsq + p0);
value := value/(((((argsq + q4)*argsq + q3)*argsq + q2)*argsq + q1)*argsq + q0);
RETURN value*arg;
END xatan;
PROCEDURE satan(arg: REAL): REAL;
BEGIN
IF arg < sq2m1 THEN
RETURN xatan(arg);
ELSIF arg > sq2p1 THEN
RETURN pio2 - xatan(1.0/arg);
ELSE
RETURN pio4 + xatan((arg-1.0)/(arg+1.0));
END;
END satan;
(*
atan makes its argument positive and
calls the inner routine satan.
*)
PROCEDURE arctan(arg: REAL): REAL;
BEGIN
IF arg>0.0 THEN
RETURN satan(arg);
ELSE
RETURN -satan(-arg);
END;
RETURN Mathlib.arctan(arg);
END arctan;
(*
sqrt returns the square root of its floating
point argument. Newton's method.
*)
PROCEDURE sqrt(arg: REAL): REAL;
VAR
x, temp: REAL;
exp, i: INTEGER;
BEGIN
IF arg <= 0.0 THEN
IF arg < 0.0 THEN
(* ??? *)
;
END;
RETURN 0.0;
END;
x := FEF(arg,exp);
(*
* NOTE
* this wont work on 1's comp
*)
IF ODD(exp) THEN
x := 2.0 * x;
DEC(exp);
END;
temp := 0.5*(1.0 + x);
WHILE exp > 28 DO
temp := temp * 16384.0;
exp := exp - 28;
END;
WHILE exp < -28 DO
temp := temp / 16384.0;
exp := exp + 28;
END;
WHILE exp >= 2 DO
temp := temp * 2.0;
exp := exp - 2;
END;
WHILE exp <= -2 DO
temp := temp / 2.0;
exp := exp + 2;
END;
FOR i := 0 TO 4 DO
temp := 0.5*(temp + arg/temp);
END;
RETURN temp;
RETURN Mathlib.sqrt(arg);
END sqrt;
(*
ln returns the natural logarithm of its floating
point argument.
The coefficients are #2705 from Hart & Cheney. (19.38D)
*)
PROCEDURE ln(arg: REAL): REAL;
CONST
log2 = 0.693147180559945309E0;
sqrto2 = 0.707106781186547524E0;
p0 = -0.240139179559210510E2;
p1 = 0.309572928215376501E2;
p2 = -0.963769093368686593E1;
p3 = 0.421087371217979714E0;
q0 = -0.120069589779605255E2;
q1 = 0.194809660700889731E2;
q2 = -0.891110902798312337E1;
VAR
x,z, zsq, temp: REAL;
exp: INTEGER;
BEGIN
IF arg <= 0.0 THEN
(* ??? *)
RETURN -HUGE;
END;
x := FEF(arg,exp);
IF x<sqrto2 THEN
x := x + x;
DEC(exp);
END;
z := (x-1.0)/(x+1.0);
zsq := z*z;
temp := ((p3*zsq + p2)*zsq + p1)*zsq + p0;
temp := temp/(((zsq + q2)*zsq + q1)*zsq + q0);
temp := temp*z + FLOAT(exp)*log2;
RETURN temp;
RETURN Mathlib.ln(arg);
END ln;
(*
exp returns the exponential function of its
floating-point argument.
The coefficients are #1069 from Hart and Cheney. (22.35D)
*)
PROCEDURE floor(d: REAL): REAL;
BEGIN
IF d < 0.0 THEN
d := -d;
IF FIF(d, 1.0, d) # 0.0 THEN
d := d + 1.0;
END;
d := -d;
ELSE
IF FIF(d, 1.0, d) # 0.0 THEN
(* just ignore result of FIF *)
;
END;
END;
RETURN d;
END floor;
PROCEDURE ldexp(fr: REAL; exp: INTEGER): REAL;
VAR
neg,i: INTEGER;
BEGIN
neg := 1;
IF fr < 0.0 THEN
fr := -fr;
neg := -1;
END;
fr := FEF(fr, i);
exp := exp + i;
IF exp > 127 THEN
(* Too large. ??? *)
RETURN FLOAT(neg) * HUGE;
END;
IF exp < -127 THEN
RETURN 0.0;
END;
WHILE exp > 14 DO
fr := fr * 16384.0;
exp := exp - 14;
END;
WHILE exp < -14 DO
fr := fr / 16384.0;
exp := exp + 14;
END;
WHILE exp > 0 DO
fr := fr + fr;
DEC(exp);
END;
WHILE exp < 0 DO
fr := fr / 2.0;
INC(exp);
END;
RETURN FLOAT(neg) * fr;
END ldexp;
PROCEDURE exp(arg: REAL): REAL;
CONST
p0 = 0.2080384346694663001443843411E7;
p1 = 0.3028697169744036299076048876E5;
p2 = 0.6061485330061080841615584556E2;
q0 = 0.6002720360238832528230907598E7;
q1 = 0.3277251518082914423057964422E6;
q2 = 0.1749287689093076403844945335E4;
log2e = 1.4426950408889634073599247;
sqrt2 = 1.4142135623730950488016887;
maxf = 10000.0;
VAR
fract: REAL;
temp1, temp2, xsq: REAL;
ent: INTEGER;
BEGIN
IF arg = 0.0 THEN
RETURN 1.0;
END;
IF arg < -maxf THEN
RETURN 0.0;
END;
IF arg > maxf THEN
(* result too large ??? *)
RETURN HUGE;
END;
arg := arg * log2e;
ent := TRUNC(floor(arg));
fract := (arg-FLOAT(ent)) - 0.5;
xsq := fract*fract;
temp1 := ((p2*xsq+p1)*xsq+p0)*fract;
temp2 := ((xsq+q2)*xsq+q1)*xsq + q0;
RETURN ldexp(sqrt2*(temp2+temp1)/(temp2-temp1), ent);
RETURN Mathlib.exp(arg);
END exp;
PROCEDURE entier(x: REAL): INTEGER;

66
lang/m2/libm2/Mathlib.def Normal file
View file

@ -0,0 +1,66 @@
DEFINITION MODULE Mathlib;
(* Some mathematical constants: *)
CONST
(* From: Handbook of Mathematical Functions
Edited by M. Abramowitz and I.A. Stegun
National Bureau of Standards
Applied Mathematics Series 55
*)
pi = 3.141592653589793238462643;
twicepi = 6.283185307179586476925286;
halfpi = 1.570796326794896619231322;
quartpi = 0.785398163397448309615661;
e = 2.718281828459045235360287;
ln2 = 0.693147180559945309417232;
ln10 = 2.302585092994045684017992;
(* basic functions *)
PROCEDURE pow(x: REAL; i: INTEGER): REAL;
PROCEDURE sqrt(x: REAL): REAL;
PROCEDURE exp(x: REAL): REAL;
PROCEDURE ln(x: REAL): REAL; (* natural log *)
PROCEDURE log(x: REAL): REAL; (* log with base 10 *)
(* trigonometric functions; arguments in radians *)
PROCEDURE sin(x: REAL): REAL;
PROCEDURE cos(x: REAL): REAL;
PROCEDURE tan(x: REAL): REAL;
PROCEDURE arcsin(x: REAL): REAL;
PROCEDURE arccos(x: REAL): REAL;
PROCEDURE arctan(x: REAL): REAL;
(* hyperbolic functions *)
PROCEDURE sinh(x: REAL): REAL;
PROCEDURE cosh(x: REAL): REAL;
PROCEDURE tanh(x: REAL): REAL;
PROCEDURE arcsinh(x: REAL): REAL;
PROCEDURE arccosh(x: REAL): REAL;
PROCEDURE arctanh(x: REAL): REAL;
(* conversions *)
PROCEDURE RadianToDegree(x: REAL): REAL;
PROCEDURE DegreeToRadian(x: REAL): REAL;
END Mathlib.

443
lang/m2/libm2/Mathlib.mod Normal file
View file

@ -0,0 +1,443 @@
IMPLEMENTATION MODULE Mathlib;
FROM FIFFEF IMPORT FIF, FEF;
(* From: Handbook of Mathematical Functions
Edited by M. Abramowitz and I.A. Stegun
National Bureau of Standards
Applied Mathematics Series 55
*)
CONST
OneRadianInDegrees = 57.295779513082320876798155D;
OneDegreeInRadians = 0.017453292519943295769237D;
(* basic functions *)
PROCEDURE pow(x: REAL; i: INTEGER): REAL;
BEGIN
RETURN SHORT(longpow(LONG(x), i));
END pow;
PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL;
VAR
val: LONGREAL;
ri: LONGREAL;
BEGIN
ri := FLOATD(i);
IF x < 0.0D THEN
val := longexp(longln(-x) * ri);
IF ODD(i) THEN RETURN -val;
ELSE RETURN val;
END;
ELSIF x = 0.0D THEN
RETURN 0.0D;
ELSE
RETURN longexp(longln(x) * ri);
END;
END longpow;
PROCEDURE sqrt(x: REAL): REAL;
BEGIN
RETURN SHORT(longsqrt(LONG(x)));
END sqrt;
PROCEDURE longsqrt(x: LONGREAL): LONGREAL;
VAR
temp: LONGREAL;
exp, i: INTEGER;
BEGIN
IF x <= 0.0D THEN
IF x < 0.0D THEN
(* ??? *)
;
END;
RETURN 0.0D;
END;
temp := FEF(x,exp);
(*
* NOTE
* this wont work on 1's comp
*)
IF ODD(exp) THEN
temp := 2.0D * temp;
DEC(exp);
END;
temp := 0.5D*(1.0D + temp);
WHILE exp > 28 DO
temp := temp * 16384.0D;
exp := exp - 28;
END;
WHILE exp < -28 DO
temp := temp / 16384.0D;
exp := exp + 28;
END;
WHILE exp >= 2 DO
temp := temp * 2.0D;
exp := exp - 2;
END;
WHILE exp <= -2 DO
temp := temp / 2.0D;
exp := exp + 2;
END;
FOR i := 0 TO 4 DO
temp := 0.5D*(temp + x/temp);
END;
RETURN temp;
END longsqrt;
PROCEDURE exp(x: REAL): REAL;
BEGIN
RETURN SHORT(longexp(LONG(x)));
END exp;
PROCEDURE longexp(x: LONGREAL): LONGREAL;
(*
* n = floor(x / ln2), d = x / ln2 - n
* exp(x) = exp((x / ln2) * ln2) = exp((n + d) * ln2) =
* exp(n * ln2) * exp(d * ln2) = 2 ** n * exp(d * ln2)
*)
CONST
a1 = -0.9999999995D;
a2 = 0.4999999206D;
a3 = -0.1666653019D;
a4 = 0.0416573475D;
a5 = -0.0083013598D;
a6 = 0.0013298820D;
a7 = -0.0001413161D;
VAR
neg: BOOLEAN;
polval: LONGREAL;
n: LONGREAL;
n1 : INTEGER;
BEGIN
neg := x < 0.0D;
IF neg THEN
x := -x;
END;
x := FIF(x, 1.0D/LONG(ln2), n) * LONG(ln2);
polval := 1.0D /(1.0D + x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7)))))));
n1 := TRUNCD(n + 0.5D);
WHILE n1 >= 16 DO
polval := polval * 65536.0D;
n1 := n1 - 16;
END;
WHILE n1 > 0 DO
polval := polval * 2.0D;
DEC(n1);
END;
IF neg THEN RETURN 1.0D/polval; END;
RETURN polval;
END longexp;
PROCEDURE ln(x: REAL): REAL; (* natural log *)
BEGIN
RETURN SHORT(longln(LONG(x)));
END ln;
PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *)
CONST
a1 = 0.9999964239D;
a2 = -0.4998741238D;
a3 = 0.3317990258D;
a4 = -0.2407338084D;
a5 = 0.1676540711D;
a6 = -0.0953293897D;
a7 = 0.0360884937D;
a8 = -0.0064535442D;
VAR
exp: INTEGER;
polval: LONGREAL;
BEGIN
IF x <= 0.0D THEN
(* ??? *)
RETURN 0.0D;
END;
x := FEF(x, exp);
WHILE x < 1.0D DO
x := x + x;
DEC(exp);
END;
x := x - 1.0D;
polval := x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*(a7+a8*x)))))));
RETURN polval + FLOATD(exp) * LONG(ln2);
END longln;
PROCEDURE log(x: REAL): REAL; (* log with base 10 *)
BEGIN
RETURN SHORT(longlog(LONG(x)));
END log;
PROCEDURE longlog(x: LONGREAL): LONGREAL; (* log with base 10 *)
BEGIN
RETURN longln(x)/LONG(ln10);
END longlog;
(* trigonometric functions; arguments in radians *)
PROCEDURE sin(x: REAL): REAL;
BEGIN
RETURN SHORT(longsin(LONG(x)));
END sin;
PROCEDURE longsin(x: LONGREAL): LONGREAL;
CONST
a2 = -0.1666666664D;
a4 = 0.0083333315D;
a6 = -0.0001984090D;
a8 = 0.0000027526D;
a10 = -0.0000000239D;
VAR
xsqr: LONGREAL;
neg: BOOLEAN;
BEGIN
neg := FALSE;
IF x < 0.0D THEN
neg := TRUE;
x := -x;
END;
x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi);
IF x >= LONG(pi) THEN
neg := NOT neg;
x := x - LONG(pi);
END;
IF x > LONG(halfpi) THEN
x := LONG(pi) - x;
END;
xsqr := x * x;
x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10)))));
IF neg THEN RETURN -x; END;
RETURN x;
END longsin;
PROCEDURE cos(x: REAL): REAL;
BEGIN
RETURN SHORT(longcos(LONG(x)));
END cos;
PROCEDURE longcos(x: LONGREAL): LONGREAL;
CONST
a2 = -0.4999999963D;
a4 = 0.0416666418D;
a6 = -0.0013888397D;
a8 = 0.0000247609D;
a10 = -0.0000002605D;
VAR
xsqr: LONGREAL;
neg: BOOLEAN;
BEGIN
neg := FALSE;
IF x < 0.0D THEN x := -x; END;
x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi);
IF x >= LONG(pi) THEN
x := LONG(twicepi) - x;
END;
IF x > LONG(halfpi) THEN
neg := NOT neg;
x := LONG(pi) - x;
END;
xsqr := x * x;
x := 1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10))));
IF neg THEN RETURN -x; END;
RETURN x;
END longcos;
PROCEDURE tan(x: REAL): REAL;
BEGIN
RETURN SHORT(longtan(LONG(x)));
END tan;
PROCEDURE longtan(x: LONGREAL): LONGREAL;
VAR cosinus: LONGREAL;
BEGIN
cosinus := longcos(x);
IF cosinus = 0.0D THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN longsin(x)/cosinus;
END longtan;
PROCEDURE arcsin(x: REAL): REAL;
BEGIN
RETURN SHORT(longarcsin(LONG(x)));
END arcsin;
PROCEDURE longarcsin(x: LONGREAL): LONGREAL;
CONST
a0 = 1.5707963050D;
a1 = -0.2145988016D;
a2 = 0.0889789874D;
a3 = -0.0501743046D;
a4 = 0.0308918810D;
a5 = -0.0170881256D;
a6 = 0.0066700901D;
a7 = -0.0012624911D;
BEGIN
IF x < 0.0D THEN x := -x; END;
IF x > 1.0D THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN LONG(halfpi) -
longsqrt(1.0D - x)*(a0+x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7)))))));
END longarcsin;
PROCEDURE arccos(x: REAL): REAL;
BEGIN
RETURN SHORT(longarccos(LONG(x)));
END arccos;
PROCEDURE longarccos(x: LONGREAL): LONGREAL;
BEGIN
RETURN LONG(halfpi) - longarcsin(x);
END longarccos;
PROCEDURE arctan(x: REAL): REAL;
BEGIN
RETURN SHORT(longarctan(LONG(x)));
END arctan;
PROCEDURE longarctan(x: LONGREAL): LONGREAL;
CONST
a2 = -0.3333314528D;
a4 = 0.1999355085D;
a6 = -0.1420889944D;
a8 = 0.1065626393D;
a10 = -0.0752896400D;
a12 = 0.0429096318D;
a14 = -0.0161657367D;
a16 = 0.0028662257D;
VAR
xsqr: LONGREAL;
rev: BOOLEAN;
neg: BOOLEAN;
BEGIN
rev := FALSE;
neg := FALSE;
IF x < 0.0D THEN
neg := TRUE;
x := -x;
END;
IF x > 1.0D THEN
rev := TRUE;
x := 1.0D / x;
END;
xsqr := x * x;
x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*(a10+xsqr*(a12+xsqr*(a14+xsqr*a16))))))));
IF rev THEN
x := LONG(quartpi) - x;
END;
IF neg THEN RETURN -x; END;
RETURN x;
END longarctan;
(* hyperbolic functions *)
PROCEDURE sinh(x: REAL): REAL;
BEGIN
RETURN SHORT(longsinh(LONG(x)));
END sinh;
PROCEDURE longsinh(x: LONGREAL): LONGREAL;
VAR expx: LONGREAL;
BEGIN
expx := longexp(x);
RETURN (expx - 1.0D/expx)/2.0D;
END longsinh;
PROCEDURE cosh(x: REAL): REAL;
BEGIN
RETURN SHORT(longcosh(LONG(x)));
END cosh;
PROCEDURE longcosh(x: LONGREAL): LONGREAL;
VAR expx: LONGREAL;
BEGIN
expx := longexp(x);
RETURN (expx + 1.0D/expx)/2.0D;
END longcosh;
PROCEDURE tanh(x: REAL): REAL;
BEGIN
RETURN SHORT(longtanh(LONG(x)));
END tanh;
PROCEDURE longtanh(x: LONGREAL): LONGREAL;
VAR expx: LONGREAL;
BEGIN
expx := longexp(x);
RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx);
END longtanh;
PROCEDURE arcsinh(x: REAL): REAL;
BEGIN
RETURN SHORT(longarcsinh(LONG(x)));
END arcsinh;
PROCEDURE longarcsinh(x: LONGREAL): LONGREAL;
VAR neg: BOOLEAN;
BEGIN
neg := FALSE;
IF x < 0.0D THEN
neg := TRUE;
x := -x;
END;
x := longln(x + longsqrt(x*x+1.0D));
IF neg THEN RETURN -x; END;
RETURN x;
END longarcsinh;
PROCEDURE arccosh(x: REAL): REAL;
BEGIN
RETURN SHORT(longarccosh(LONG(x)));
END arccosh;
PROCEDURE longarccosh(x: LONGREAL): LONGREAL;
BEGIN
IF x < 1.0D THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN longln(x + longsqrt(x*x - 1.0D));
END longarccosh;
PROCEDURE arctanh(x: REAL): REAL;
BEGIN
RETURN SHORT(longarctanh(LONG(x)));
END arctanh;
PROCEDURE longarctanh(x: LONGREAL): LONGREAL;
BEGIN
IF (x <= -1.0D) OR (x >= 1.0D) THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D;
END longarctanh;
(* conversions *)
PROCEDURE RadianToDegree(x: REAL): REAL;
BEGIN
RETURN SHORT(longRadianToDegree(LONG(x)));
END RadianToDegree;
PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL;
BEGIN
RETURN x * OneRadianInDegrees;
END longRadianToDegree;
PROCEDURE DegreeToRadian(x: REAL): REAL;
BEGIN
RETURN SHORT(longDegreeToRadian(LONG(x)));
END DegreeToRadian;
PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL;
BEGIN
RETURN x * OneDegreeInRadians;
END longDegreeToRadian;
END Mathlib.

View file

@ -2,21 +2,30 @@ IMPLEMENTATION MODULE RealConversions;
FROM FIFFEF IMPORT FIF, FEF;
PROCEDURE RealToString(r: REAL;
PROCEDURE RealToString(arg: REAL;
width, digits: INTEGER;
VAR str: ARRAY OF CHAR;
VAR ok: BOOLEAN);
BEGIN
LongRealToString(LONG(arg), width, digits, str, ok);
END RealToString;
PROCEDURE LongRealToString(arg: LONGREAL;
width, digits: INTEGER;
VAR str: ARRAY OF CHAR;
VAR ok: BOOLEAN);
VAR pointpos: INTEGER;
i: CARDINAL;
ecvtflag: BOOLEAN;
intpart, fractpart: REAL;
r, intpart, fractpart: LONGREAL;
ind1, ind2 : CARDINAL;
sign: BOOLEAN;
tmp : CHAR;
ndigits: CARDINAL;
dummy, dig: REAL;
dummy, dig: LONGREAL;
BEGIN
r := arg;
DEC(width);
IF digits < 0 THEN
ecvtflag := TRUE;
@ -27,9 +36,10 @@ IMPLEMENTATION MODULE RealConversions;
END;
IF HIGH(str) < ndigits + 3 THEN str[0] := 0C; ok := FALSE; RETURN END;
pointpos := 0;
sign := r < 0.0;
sign := r < 0.0D;
IF sign THEN r := -r END;
r := FIF(r, 1.0, intpart);
r := FIF(r, 1.0D, intpart);
fractpart := r;
pointpos := 0;
ind1 := 0;
ok := TRUE;
@ -37,9 +47,9 @@ IMPLEMENTATION MODULE RealConversions;
Do integer part, which is now in "intpart". "r" now contains the
fraction part.
*)
IF intpart # 0.0 THEN
IF intpart # 0.0D THEN
ind2 := 0;
WHILE intpart # 0.0 DO
WHILE intpart # 0.0D DO
IF ind2 > HIGH(str) THEN
IF NOT ecvtflag THEN
str[0] := 0C;
@ -51,11 +61,11 @@ IMPLEMENTATION MODULE RealConversions;
END;
DEC(ind2);
END;
dummy := FIF(FIF(intpart, 0.1, intpart),10.0, dig);
IF (dummy > 0.5) AND (dig < 9.0) THEN
dig := dig + 1.0;
dummy := FIF(FIF(intpart, 0.1D, intpart),10.0D, dig);
IF (dummy > 0.5D) AND (dig < 9.0D) THEN
dig := dig + 1.0D;
END;
str[ind2] := CHR(TRUNC(dig+0.5) + ORD('0'));
str[ind2] := CHR(TRUNC(dig+0.5D) + ORD('0'));
INC(ind2);
INC(pointpos);
END;
@ -70,10 +80,10 @@ IMPLEMENTATION MODULE RealConversions;
END;
ELSE
INC(pointpos);
IF r > 0.0 THEN
WHILE r < 1.0 DO
IF r > 0.0D THEN
WHILE r < 1.0D DO
fractpart := r;
r := r * 10.0;
r := r * 10.0D;
DEC(pointpos);
END;
END;
@ -94,7 +104,7 @@ IMPLEMENTATION MODULE RealConversions;
RETURN;
END;
WHILE ind1 <= ind2 DO
fractpart := FIF(fractpart, 10.0, r);
fractpart := FIF(fractpart, 10.0D, r);
str[ind1] := CHR(TRUNC(r)+ORD('0'));
INC(ind1);
END;
@ -191,17 +201,26 @@ IMPLEMENTATION MODULE RealConversions;
END;
IF (ind1+1) <= HIGH(str) THEN str[ind1+1] := 0C; END;
END RealToString;
END LongRealToString;
PROCEDURE StringToReal(str: ARRAY OF CHAR;
VAR r: REAL; VAR ok: BOOLEAN);
VAR x: LONGREAL;
BEGIN
StringToLongReal(str, x, ok);
IF ok THEN
r := x;
END;
END StringToReal;
CONST BIG = 1.0E17;
PROCEDURE StringToLongReal(str: ARRAY OF CHAR;
VAR r: LONGREAL; VAR ok: BOOLEAN);
CONST BIG = 1.0D17;
TYPE SETOFCHAR = SET OF CHAR;
VAR pow10 : INTEGER;
i : INTEGER;
e : REAL;
e : LONGREAL;
ch : CHAR;
signed: BOOLEAN;
signedexp: BOOLEAN;
@ -209,11 +228,11 @@ IMPLEMENTATION MODULE RealConversions;
PROCEDURE dig(ch: CARDINAL);
BEGIN
IF r>BIG THEN INC(pow10) ELSE r:= 10.0*r + FLOAT(ch) END;
IF r>BIG THEN INC(pow10) ELSE r:= 10.0D*r + FLOATD(ch) END;
END dig;
BEGIN
r := 0.0;
r := 0.0D;
pow10 := 0;
iB := 0;
ok := TRUE;
@ -276,10 +295,10 @@ IMPLEMENTATION MODULE RealConversions;
pow10 := pow10 + i;
END;
IF pow10 < 0 THEN i := -pow10; ELSE i := pow10; END;
e := 1.0;
e := 1.0D;
DEC(i);
WHILE i >= 0 DO
e := e * 10.0;
e := e * 10.0D;
DEC(i)
END;
IF pow10<0 THEN
@ -289,6 +308,6 @@ IMPLEMENTATION MODULE RealConversions;
END;
IF signed THEN r := -r; END;
IF (iB <= HIGH(str)) AND (ORD(ch) > ORD(' ')) THEN ok := FALSE; END
END StringToReal;
END StringToLongReal;
END RealConversions.