Added Mathlib; MathLib0 now uses Mathlib
This commit is contained in:
		
							parent
							
								
									791ec39e57
								
							
						
					
					
						commit
						86c5c56a38
					
				
					 10 changed files with 591 additions and 351 deletions
				
			
		|  | @ -6,6 +6,7 @@ Conversion.def | |||
| FIFFEF.def | ||||
| InOut.def | ||||
| Makefile | ||||
| Mathlib.def | ||||
| MathLib0.def | ||||
| Processes.def | ||||
| RealInOut.def | ||||
|  |  | |||
|  | @ -1,11 +1,12 @@ | |||
| (*$Foreign*) | ||||
| DEFINITION MODULE FIFFEF; | ||||
| 
 | ||||
| 	PROCEDURE FIF(arg1, arg2: REAL; VAR intres: REAL) : REAL; | ||||
| 	PROCEDURE FIF(arg1, arg2: LONGREAL; VAR intres: LONGREAL) : LONGREAL; | ||||
| 	(* multiplies arg1 and arg2, and returns the integer part of the | ||||
| 	   result in "intres" and the fraction part as the function result. | ||||
| 	*) | ||||
| 
 | ||||
| 	PROCEDURE FEF(arg: REAL; VAR exp: INTEGER) : REAL; | ||||
| 	PROCEDURE FEF(arg: LONGREAL; VAR exp: INTEGER) : LONGREAL; | ||||
| 	(* splits "arg" in mantissa and a base-2 exponent. | ||||
| 	   The mantissa is returned, and the exponent is left in "exp". | ||||
| 	*) | ||||
|  |  | |||
|  | @ -2,50 +2,45 @@ | |||
|  mes 2,EM_WSIZE,EM_PSIZE | ||||
| 
 | ||||
| #define ARG1    0 | ||||
| #define ARG2    EM_FSIZE | ||||
| #define IRES    2*EM_FSIZE | ||||
| #define ARG2    EM_DSIZE | ||||
| #define IRES    2*EM_DSIZE | ||||
| 
 | ||||
| ; FIFFEF_FIF is called with three parameters: | ||||
| ; FIF is called with three parameters: | ||||
| ;       - address of integer part result (IRES) | ||||
| ;       - float two (ARG2) | ||||
| ;       - float one (ARG1) | ||||
| ; and returns an EM_FSIZE-byte floating point number | ||||
| ; and returns an EM_DSIZE-byte floating point number | ||||
| ; Definition: | ||||
| ;	PROCEDURE FIF(ARG1, ARG2: REAL; VAR IRES: REAL) : REAL; | ||||
| ;	PROCEDURE FIF(ARG1, ARG2: LONGREAL; VAR IRES: LONGREAL) : LONGREAL; | ||||
| 
 | ||||
|  exp $FIFFEF_FIF | ||||
|  pro $FIFFEF_FIF,0 | ||||
|  exp $FIF | ||||
|  pro $FIF,0 | ||||
|  lal 0 | ||||
|  loi 2*EM_FSIZE | ||||
|  fif EM_FSIZE | ||||
|  loi 2*EM_DSIZE | ||||
|  fif EM_DSIZE | ||||
|  lal IRES | ||||
|  loi EM_PSIZE | ||||
|  sti EM_FSIZE | ||||
|  ret EM_FSIZE | ||||
|  sti EM_DSIZE | ||||
|  ret EM_DSIZE | ||||
|  end ? | ||||
| 
 | ||||
| #define FARG    0 | ||||
| #define ERES    EM_FSIZE | ||||
| #define ERES    EM_DSIZE | ||||
| 
 | ||||
| ; FIFFEF_FEF is called with two parameters: | ||||
| ; FEF is called with two parameters: | ||||
| ;       - address of base 2 exponent result (ERES) | ||||
| ;       - floating point number to be split (FARG) | ||||
| ; and returns an EM_FSIZE-byte floating point number (the mantissa) | ||||
| ; and returns an EM_DSIZE-byte floating point number (the mantissa) | ||||
| ; Definition: | ||||
| ;	PROCEDURE FEF(FARG: REAL; VAR ERES: integer): REAL; | ||||
| ;	PROCEDURE FEF(FARG: LONGREAL; VAR ERES: integer): LONGREAL; | ||||
| 
 | ||||
|  exp $FIFFEF_FEF | ||||
|  pro $FIFFEF_FEF,0 | ||||
|  exp $FEF | ||||
|  pro $FEF,0 | ||||
|  lal FARG | ||||
|  loi EM_FSIZE | ||||
|  fef EM_FSIZE | ||||
|  loi EM_DSIZE | ||||
|  fef EM_DSIZE | ||||
|  lal ERES | ||||
|  loi EM_PSIZE | ||||
|  sti EM_WSIZE | ||||
|  ret EM_FSIZE | ||||
|  end ? | ||||
| 
 | ||||
|  exp $FIFFEF | ||||
|  pro $FIFFEF,0 | ||||
|  ret 0 | ||||
|  ret EM_DSIZE | ||||
|  end ? | ||||
|  |  | |||
|  | @ -1,18 +1,19 @@ | |||
| tail_m2.a | ||||
| RealInOut.mod | ||||
| InOut.mod | ||||
| Terminal.mod | ||||
| TTY.mod | ||||
| ASCII.mod | ||||
| FIFFEF.e | ||||
| MathLib0.mod | ||||
| Mathlib.mod | ||||
| Processes.mod | ||||
| RealConver.mod | ||||
| RealInOut.mod | ||||
| Storage.mod | ||||
| Conversion.mod | ||||
| Semaphores.mod | ||||
| random.mod | ||||
| Strings.mod | ||||
| FIFFEF.e | ||||
| Arguments.c | ||||
| catch.c | ||||
| hol0.e | ||||
|  |  | |||
|  | @ -4,7 +4,8 @@ DEFDIR = $(HOME)/lib/m2 | |||
| SOURCES =	ASCII.def FIFFEF.def MathLib0.def Processes.def \
 | ||||
| 		RealInOut.def Storage.def Arguments.def Conversion.def \
 | ||||
| 		random.def Semaphores.def Unix.def RealConver.def \
 | ||||
| 		Strings.def InOut.def Terminal.def TTY.def | ||||
| 		Strings.def InOut.def Terminal.def TTY.def \
 | ||||
| 		Mathlib.def | ||||
| 
 | ||||
| all: | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,4 +1,8 @@ | |||
| DEFINITION MODULE MathLib0; | ||||
| (* | ||||
| 	Exists for compatibility. | ||||
| 	A more elaborate math lib can be found in Mathlib.def | ||||
| *) | ||||
| 
 | ||||
| 	PROCEDURE sqrt(x : REAL) : REAL; | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,326 +1,35 @@ | |||
| IMPLEMENTATION MODULE MathLib0; | ||||
| (*	Rewritten in Modula-2. | ||||
| 	The originals came from the Pascal runtime library. | ||||
| *) | ||||
| 
 | ||||
| FROM FIFFEF	IMPORT	FIF, FEF; | ||||
| 
 | ||||
| CONST | ||||
| 	HUGE =	1.701411733192644270E38; | ||||
| 
 | ||||
| PROCEDURE sinus(arg: REAL; quad: INTEGER): REAL; | ||||
| 
 | ||||
| (*	Coefficients for sin/cos are #3370 from Hart & Cheney (18.80D). | ||||
| *) | ||||
| CONST | ||||
| 	twoopi	= 0.63661977236758134308; | ||||
| 	p0	= 0.1357884097877375669092680E8; | ||||
| 	p1	= -0.4942908100902844161158627E7; | ||||
| 	p2	= 0.4401030535375266501944918E6; | ||||
| 	p3	= -0.1384727249982452873054457E5; | ||||
| 	p4	= 0.1459688406665768722226959E3; | ||||
| 	q0	= 0.8644558652922534429915149E7; | ||||
| 	q1	= 0.4081792252343299749395779E6; | ||||
| 	q2	= 0.9463096101538208180571257E4; | ||||
| 	q3	= 0.1326534908786136358911494E3; | ||||
| VAR | ||||
| 	e, f: REAL; | ||||
| 	ysq: REAL; | ||||
| 	x,y: REAL; | ||||
| 	k: INTEGER; | ||||
| 	temp1, temp2: REAL; | ||||
| BEGIN | ||||
| 	x := arg; | ||||
| 	IF x < 0.0 THEN | ||||
| 		x := -x; | ||||
| 		quad := quad + 2; | ||||
| 	END; | ||||
| 	x := x*twoopi;	(*underflow?*) | ||||
| 	IF x>32764.0 THEN | ||||
| 		y := FIF(x, 10.0, e); | ||||
| 		e := e + FLOAT(quad); | ||||
| 		temp1 := FIF(0.25, e, f); | ||||
| 		quad := TRUNC(e - 4.0*f); | ||||
| 	ELSE | ||||
| 		k := TRUNC(x); | ||||
| 		y := x - FLOAT(k); | ||||
| 		quad := (quad + k) MOD 4; | ||||
| 	END; | ||||
| 	IF ODD(quad) THEN | ||||
| 		y := 1.0-y; | ||||
| 	END; | ||||
| 	IF quad > 1 THEN | ||||
| 		y := -y; | ||||
| 	END; | ||||
| 
 | ||||
| 	ysq := y*y; | ||||
| 	temp1 := ((((p4*ysq+p3)*ysq+p2)*ysq+p1)*ysq+p0)*y; | ||||
| 	temp2 := ((((ysq+q3)*ysq+q2)*ysq+q1)*ysq+q0); | ||||
| 	RETURN temp1/temp2; | ||||
| END sinus; | ||||
|   IMPORT Mathlib; | ||||
| 
 | ||||
| PROCEDURE cos(arg: REAL): REAL; | ||||
| BEGIN | ||||
| 	IF arg < 0.0 THEN | ||||
| 		arg := -arg; | ||||
| 	END; | ||||
| 	RETURN sinus(arg, 1); | ||||
| 	RETURN Mathlib.cos(arg); | ||||
| END cos; | ||||
| 
 | ||||
| PROCEDURE sin(arg: REAL): REAL; | ||||
| BEGIN | ||||
| 	RETURN sinus(arg, 0); | ||||
| 	RETURN Mathlib.sin(arg); | ||||
| END sin; | ||||
| 
 | ||||
| (* | ||||
| 	floating-point arctangent | ||||
| 
 | ||||
| 	arctan returns the value of the arctangent of its | ||||
| 	argument in the range [-pi/2,pi/2]. | ||||
| 
 | ||||
| 	coefficients are #5077 from Hart & Cheney. (19.56D) | ||||
| *) | ||||
| 
 | ||||
| CONST | ||||
| 	sq2p1	= 2.414213562373095048802E0; | ||||
| 	sq2m1	= 0.414213562373095048802E0; | ||||
| 	pio2	= 1.570796326794896619231E0; | ||||
| 	pio4	= 0.785398163397448309615E0; | ||||
| 	p4	= 0.161536412982230228262E2; | ||||
| 	p3	= 0.26842548195503973794141E3; | ||||
| 	p2	= 0.11530293515404850115428136E4; | ||||
| 	p1	= 0.178040631643319697105464587E4; | ||||
| 	p0	= 0.89678597403663861959987488E3; | ||||
| 	q4	= 0.5895697050844462222791E2; | ||||
| 	q3	= 0.536265374031215315104235E3; | ||||
| 	q2	= 0.16667838148816337184521798E4; | ||||
| 	q1	= 0.207933497444540981287275926E4; | ||||
| 	q0	= 0.89678597403663861962481162E3; | ||||
| 
 | ||||
| (* | ||||
| 	xatan evaluates a series valid in the | ||||
| 	range [-0.414...,+0.414...]. | ||||
| *) | ||||
| 
 | ||||
| PROCEDURE xatan(arg: REAL) : REAL; | ||||
| VAR | ||||
| 	argsq, value: REAL; | ||||
| BEGIN | ||||
| 	argsq := arg*arg; | ||||
| 	value := ((((p4*argsq + p3)*argsq + p2)*argsq + p1)*argsq + p0); | ||||
| 	value := value/(((((argsq + q4)*argsq + q3)*argsq + q2)*argsq + q1)*argsq + q0); | ||||
| 	RETURN value*arg; | ||||
| END xatan; | ||||
| 
 | ||||
| PROCEDURE satan(arg: REAL): REAL; | ||||
| BEGIN | ||||
| 	IF arg < sq2m1 THEN | ||||
| 		RETURN xatan(arg); | ||||
| 	ELSIF arg > sq2p1 THEN | ||||
| 		RETURN pio2 - xatan(1.0/arg); | ||||
| 	ELSE | ||||
| 		RETURN pio4 + xatan((arg-1.0)/(arg+1.0)); | ||||
| 	END; | ||||
| END satan; | ||||
| 
 | ||||
| (* | ||||
| 	atan makes its argument positive and | ||||
| 	calls the inner routine satan. | ||||
| *) | ||||
| 
 | ||||
| PROCEDURE arctan(arg: REAL): REAL; | ||||
| BEGIN | ||||
| 	IF arg>0.0 THEN | ||||
| 		RETURN satan(arg); | ||||
| 	ELSE | ||||
| 		RETURN -satan(-arg); | ||||
| 	END; | ||||
| 	RETURN Mathlib.arctan(arg); | ||||
| END arctan; | ||||
| 
 | ||||
| (* | ||||
| 	sqrt returns the square root of its floating | ||||
| 	point argument. Newton's method. | ||||
| *) | ||||
| 
 | ||||
| PROCEDURE sqrt(arg: REAL): REAL; | ||||
| VAR | ||||
| 	x, temp: REAL; | ||||
| 	exp, i: INTEGER; | ||||
| BEGIN | ||||
| 	IF arg <= 0.0 THEN | ||||
| 		IF arg < 0.0 THEN | ||||
| 			(* ??? *) | ||||
| 			; | ||||
| 		END; | ||||
| 		RETURN 0.0; | ||||
| 	END; | ||||
| 	x := FEF(arg,exp); | ||||
| 	(* | ||||
| 	 * NOTE | ||||
| 	 * this wont work on 1's comp | ||||
| 	 *) | ||||
| 	IF ODD(exp) THEN | ||||
| 		x := 2.0 * x; | ||||
| 		DEC(exp); | ||||
| 	END; | ||||
| 	temp := 0.5*(1.0 + x); | ||||
| 
 | ||||
| 	WHILE exp > 28 DO | ||||
| 		temp := temp * 16384.0; | ||||
| 		exp := exp - 28; | ||||
| 	END; | ||||
| 	WHILE exp < -28 DO | ||||
| 		temp := temp / 16384.0; | ||||
| 		exp := exp + 28; | ||||
| 	END; | ||||
| 	WHILE exp >= 2 DO | ||||
| 		temp := temp * 2.0; | ||||
| 		exp := exp - 2; | ||||
| 	END; | ||||
| 	WHILE exp <= -2 DO | ||||
| 		temp := temp / 2.0; | ||||
| 		exp := exp + 2; | ||||
| 	END; | ||||
| 	FOR i := 0 TO 4 DO | ||||
| 		temp := 0.5*(temp + arg/temp); | ||||
| 	END; | ||||
| 	RETURN temp; | ||||
| 	RETURN Mathlib.sqrt(arg); | ||||
| END sqrt; | ||||
| 
 | ||||
| (* | ||||
| 	ln returns the natural logarithm of its floating | ||||
| 	point argument. | ||||
| 
 | ||||
| 	The coefficients are #2705 from Hart & Cheney. (19.38D) | ||||
| *) | ||||
| PROCEDURE ln(arg: REAL): REAL; | ||||
| CONST | ||||
| 	log2	= 0.693147180559945309E0; | ||||
| 	sqrto2	= 0.707106781186547524E0; | ||||
| 	p0	= -0.240139179559210510E2; | ||||
| 	p1	= 0.309572928215376501E2; | ||||
| 	p2	= -0.963769093368686593E1; | ||||
| 	p3	= 0.421087371217979714E0; | ||||
| 	q0	= -0.120069589779605255E2; | ||||
| 	q1	= 0.194809660700889731E2; | ||||
| 	q2	= -0.891110902798312337E1; | ||||
| VAR | ||||
| 	x,z, zsq, temp: REAL; | ||||
| 	exp: INTEGER; | ||||
| BEGIN | ||||
| 	IF arg <= 0.0 THEN | ||||
| 		(* ??? *) | ||||
| 		RETURN -HUGE; | ||||
| 	END; | ||||
| 	x := FEF(arg,exp); | ||||
| 	IF x<sqrto2 THEN | ||||
| 		x := x + x; | ||||
| 		DEC(exp); | ||||
| 	END; | ||||
| 
 | ||||
| 	z := (x-1.0)/(x+1.0); | ||||
| 	zsq := z*z; | ||||
| 
 | ||||
| 	temp := ((p3*zsq + p2)*zsq + p1)*zsq + p0; | ||||
| 	temp := temp/(((zsq + q2)*zsq + q1)*zsq + q0); | ||||
| 	temp := temp*z + FLOAT(exp)*log2; | ||||
| 	RETURN temp; | ||||
| 	RETURN Mathlib.ln(arg); | ||||
| END ln; | ||||
| 
 | ||||
| (* | ||||
| 	exp returns the exponential function of its | ||||
| 	floating-point argument. | ||||
| 
 | ||||
| 	The coefficients are #1069 from Hart and Cheney. (22.35D) | ||||
| *) | ||||
| 
 | ||||
| PROCEDURE floor(d: REAL): REAL; | ||||
| BEGIN | ||||
| 	IF d < 0.0 THEN | ||||
| 		d := -d; | ||||
| 		IF FIF(d, 1.0, d) # 0.0 THEN | ||||
| 			d := d + 1.0; | ||||
| 		END; | ||||
| 		d := -d; | ||||
| 	ELSE | ||||
| 		IF FIF(d, 1.0, d) # 0.0 THEN | ||||
| 			(* just ignore result of FIF *) | ||||
| 			; | ||||
| 		END; | ||||
| 	END; | ||||
| 	RETURN d; | ||||
| END floor; | ||||
| 
 | ||||
| PROCEDURE ldexp(fr: REAL; exp: INTEGER): REAL; | ||||
| VAR | ||||
| 	neg,i: INTEGER; | ||||
| BEGIN | ||||
| 	neg := 1; | ||||
| 	IF fr < 0.0 THEN | ||||
| 		fr := -fr; | ||||
| 		neg := -1; | ||||
| 	END; | ||||
| 	fr := FEF(fr, i); | ||||
| 	exp := exp + i; | ||||
| 	IF exp > 127 THEN | ||||
| 		(* Too large. ??? *) | ||||
| 		RETURN FLOAT(neg) * HUGE; | ||||
| 	END; | ||||
| 	IF exp < -127 THEN | ||||
| 		RETURN 0.0; | ||||
| 	END; | ||||
| 	WHILE exp > 14 DO | ||||
| 		fr := fr * 16384.0; | ||||
| 		exp := exp - 14; | ||||
| 	END; | ||||
| 	WHILE exp < -14 DO | ||||
| 		fr := fr / 16384.0; | ||||
| 		exp := exp + 14; | ||||
| 	END; | ||||
| 	WHILE exp > 0 DO | ||||
| 		fr := fr + fr; | ||||
| 		DEC(exp); | ||||
| 	END; | ||||
| 	WHILE exp < 0 DO | ||||
| 		fr := fr / 2.0; | ||||
| 		INC(exp); | ||||
| 	END; | ||||
| 	RETURN FLOAT(neg) * fr; | ||||
| END ldexp; | ||||
| 
 | ||||
| PROCEDURE exp(arg: REAL): REAL; | ||||
| CONST | ||||
| 	p0	= 0.2080384346694663001443843411E7; | ||||
| 	p1	= 0.3028697169744036299076048876E5; | ||||
| 	p2	= 0.6061485330061080841615584556E2; | ||||
| 	q0	= 0.6002720360238832528230907598E7; | ||||
| 	q1	= 0.3277251518082914423057964422E6; | ||||
| 	q2	= 0.1749287689093076403844945335E4; | ||||
| 	log2e	= 1.4426950408889634073599247; | ||||
| 	sqrt2	= 1.4142135623730950488016887; | ||||
| 	maxf	= 10000.0; | ||||
| VAR | ||||
| 	fract: REAL; | ||||
| 	temp1, temp2, xsq: REAL; | ||||
| 	ent: INTEGER; | ||||
| BEGIN | ||||
| 	IF arg = 0.0 THEN | ||||
| 		RETURN 1.0; | ||||
| 	END; | ||||
| 	IF arg < -maxf THEN | ||||
| 		RETURN 0.0; | ||||
| 	END; | ||||
| 	IF arg > maxf THEN | ||||
| 		(* result too large ??? *) | ||||
| 		RETURN HUGE; | ||||
| 	END; | ||||
| 	arg := arg * log2e; | ||||
| 	ent := TRUNC(floor(arg)); | ||||
| 	fract := (arg-FLOAT(ent)) - 0.5; | ||||
| 	xsq := fract*fract; | ||||
| 	temp1 := ((p2*xsq+p1)*xsq+p0)*fract; | ||||
| 	temp2 := ((xsq+q2)*xsq+q1)*xsq + q0; | ||||
| 	RETURN ldexp(sqrt2*(temp2+temp1)/(temp2-temp1), ent); | ||||
| 	RETURN Mathlib.exp(arg); | ||||
| END exp; | ||||
| 
 | ||||
| PROCEDURE entier(x: REAL): INTEGER; | ||||
|  |  | |||
							
								
								
									
										66
									
								
								lang/m2/libm2/Mathlib.def
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										66
									
								
								lang/m2/libm2/Mathlib.def
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,66 @@ | |||
| DEFINITION MODULE Mathlib; | ||||
| 
 | ||||
|   (* Some mathematical constants: *) | ||||
| 
 | ||||
|   CONST | ||||
| 	(* From:	Handbook of Mathematical Functions | ||||
| 			Edited by M. Abramowitz and I.A. Stegun | ||||
| 			National Bureau of Standards | ||||
| 			Applied Mathematics Series 55 | ||||
| 	*) | ||||
| 
 | ||||
| 	pi	= 3.141592653589793238462643; | ||||
| 	twicepi	= 6.283185307179586476925286; | ||||
| 	halfpi	= 1.570796326794896619231322; | ||||
| 	quartpi	= 0.785398163397448309615661; | ||||
| 	e	= 2.718281828459045235360287; | ||||
| 	ln2	= 0.693147180559945309417232; | ||||
| 	ln10	= 2.302585092994045684017992; | ||||
| 
 | ||||
|   (* basic functions *) | ||||
| 
 | ||||
|   PROCEDURE pow(x: REAL; i: INTEGER): REAL; | ||||
| 
 | ||||
|   PROCEDURE sqrt(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE exp(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE ln(x: REAL): REAL;	(* natural log *) | ||||
| 
 | ||||
|   PROCEDURE log(x: REAL): REAL;	(* log with base 10 *) | ||||
| 
 | ||||
|   (* trigonometric functions; arguments in radians *) | ||||
| 
 | ||||
|   PROCEDURE sin(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE cos(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE tan(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE arcsin(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE arccos(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE arctan(x: REAL): REAL; | ||||
| 
 | ||||
|   (* hyperbolic functions *) | ||||
| 
 | ||||
|   PROCEDURE sinh(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE cosh(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE tanh(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE arcsinh(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE arccosh(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE arctanh(x: REAL): REAL; | ||||
| 
 | ||||
|   (* conversions *) | ||||
| 
 | ||||
|   PROCEDURE RadianToDegree(x: REAL): REAL; | ||||
| 
 | ||||
|   PROCEDURE DegreeToRadian(x: REAL): REAL; | ||||
| 
 | ||||
| END Mathlib. | ||||
							
								
								
									
										443
									
								
								lang/m2/libm2/Mathlib.mod
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										443
									
								
								lang/m2/libm2/Mathlib.mod
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,443 @@ | |||
| IMPLEMENTATION MODULE Mathlib; | ||||
| 
 | ||||
|   FROM FIFFEF IMPORT FIF, FEF; | ||||
| 
 | ||||
| 	(* From:	Handbook of Mathematical Functions | ||||
| 			Edited by M. Abramowitz and I.A. Stegun | ||||
| 			National Bureau of Standards | ||||
| 			Applied Mathematics Series 55 | ||||
| 	*) | ||||
| 
 | ||||
|   CONST | ||||
| 	OneRadianInDegrees	= 57.295779513082320876798155D; | ||||
| 	OneDegreeInRadians	=  0.017453292519943295769237D; | ||||
| 
 | ||||
|   (* basic functions *) | ||||
| 
 | ||||
|   PROCEDURE pow(x: REAL; i: INTEGER): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longpow(LONG(x), i)); | ||||
|   END pow; | ||||
| 
 | ||||
|   PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL; | ||||
|     VAR | ||||
| 	val: LONGREAL; | ||||
| 	ri: LONGREAL; | ||||
|   BEGIN | ||||
| 	ri := FLOATD(i); | ||||
| 	IF x < 0.0D THEN | ||||
| 		val := longexp(longln(-x) * ri); | ||||
| 		IF ODD(i) THEN RETURN -val; | ||||
| 		ELSE RETURN val; | ||||
| 		END; | ||||
| 	ELSIF x = 0.0D THEN | ||||
| 		RETURN 0.0D; | ||||
| 	ELSE | ||||
| 		RETURN longexp(longln(x) * ri); | ||||
| 	END; | ||||
|   END longpow; | ||||
| 
 | ||||
|   PROCEDURE sqrt(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longsqrt(LONG(x))); | ||||
|   END sqrt; | ||||
| 
 | ||||
|   PROCEDURE longsqrt(x: LONGREAL): LONGREAL; | ||||
|     VAR | ||||
| 	temp: LONGREAL; | ||||
| 	exp, i: INTEGER; | ||||
|   BEGIN | ||||
| 	IF x <= 0.0D THEN | ||||
| 		IF x < 0.0D THEN | ||||
| 			(* ??? *) | ||||
| 			; | ||||
| 		END; | ||||
| 		RETURN 0.0D; | ||||
| 	END; | ||||
| 	temp := FEF(x,exp); | ||||
| 	(* | ||||
| 	 * NOTE | ||||
| 	 * this wont work on 1's comp | ||||
| 	 *) | ||||
| 	IF ODD(exp) THEN | ||||
| 		temp := 2.0D * temp; | ||||
| 		DEC(exp); | ||||
| 	END; | ||||
| 	temp := 0.5D*(1.0D + temp); | ||||
| 
 | ||||
| 	WHILE exp > 28 DO | ||||
| 		temp := temp * 16384.0D; | ||||
| 		exp := exp - 28; | ||||
| 	END; | ||||
| 	WHILE exp < -28 DO | ||||
| 		temp := temp / 16384.0D; | ||||
| 		exp := exp + 28; | ||||
| 	END; | ||||
| 	WHILE exp >= 2 DO | ||||
| 		temp := temp * 2.0D; | ||||
| 		exp := exp - 2; | ||||
| 	END; | ||||
| 	WHILE exp <= -2 DO | ||||
| 		temp := temp / 2.0D; | ||||
| 		exp := exp + 2; | ||||
| 	END; | ||||
| 	FOR i := 0 TO 4 DO | ||||
| 		temp := 0.5D*(temp + x/temp); | ||||
| 	END; | ||||
| 	RETURN temp; | ||||
|   END longsqrt; | ||||
| 
 | ||||
|   PROCEDURE exp(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longexp(LONG(x))); | ||||
|   END exp; | ||||
| 
 | ||||
|   PROCEDURE longexp(x: LONGREAL): LONGREAL; | ||||
|   (* | ||||
|    * n = floor(x / ln2), d = x / ln2 - n | ||||
|    * exp(x) = exp((x / ln2) * ln2) = exp((n + d) * ln2) = | ||||
|    * exp(n * ln2) * exp(d * ln2) = 2 ** n * exp(d * ln2) | ||||
|    *) | ||||
|     CONST | ||||
| 	a1 = -0.9999999995D; | ||||
| 	a2 =  0.4999999206D; | ||||
| 	a3 = -0.1666653019D; | ||||
| 	a4 =  0.0416573475D; | ||||
| 	a5 = -0.0083013598D; | ||||
| 	a6 =  0.0013298820D; | ||||
| 	a7 = -0.0001413161D; | ||||
|     VAR | ||||
| 	neg: BOOLEAN; | ||||
| 	polval: LONGREAL; | ||||
| 	n: LONGREAL; | ||||
| 	n1 : INTEGER; | ||||
|   BEGIN | ||||
| 	neg := x < 0.0D; | ||||
| 	IF neg THEN | ||||
| 		x := -x; | ||||
| 	END; | ||||
| 	x := FIF(x, 1.0D/LONG(ln2), n) * LONG(ln2); | ||||
| 	polval := 1.0D /(1.0D + x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7))))))); | ||||
| 	n1 := TRUNCD(n + 0.5D); | ||||
| 	WHILE n1 >= 16 DO | ||||
| 		polval := polval * 65536.0D; | ||||
| 		n1 := n1 - 16; | ||||
| 	END; | ||||
| 	WHILE n1 > 0 DO | ||||
| 		polval := polval * 2.0D; | ||||
| 		DEC(n1); | ||||
| 	END; | ||||
| 	IF neg THEN RETURN 1.0D/polval; END; | ||||
| 	RETURN polval; | ||||
|   END longexp; | ||||
| 
 | ||||
|   PROCEDURE ln(x: REAL): REAL;	(* natural log *) | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longln(LONG(x))); | ||||
|   END ln; | ||||
| 
 | ||||
|   PROCEDURE longln(x: LONGREAL): LONGREAL;	(* natural log *) | ||||
|     CONST | ||||
| 	a1 =  0.9999964239D; | ||||
| 	a2 = -0.4998741238D; | ||||
| 	a3 =  0.3317990258D; | ||||
| 	a4 = -0.2407338084D; | ||||
| 	a5 =  0.1676540711D; | ||||
| 	a6 = -0.0953293897D; | ||||
| 	a7 =  0.0360884937D; | ||||
| 	a8 = -0.0064535442D; | ||||
|     VAR | ||||
| 	exp: INTEGER; | ||||
| 	polval: LONGREAL; | ||||
| 
 | ||||
|   BEGIN | ||||
| 	IF x <= 0.0D THEN | ||||
| 		(* ??? *) | ||||
| 		RETURN 0.0D; | ||||
| 	END; | ||||
| 	x := FEF(x, exp); | ||||
| 	WHILE x < 1.0D DO | ||||
| 		x := x + x; | ||||
| 		DEC(exp); | ||||
| 	END; | ||||
| 	x := x - 1.0D; | ||||
| 	polval := x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*(a7+a8*x))))))); | ||||
| 	RETURN polval + FLOATD(exp) * LONG(ln2); | ||||
|   END longln; | ||||
| 
 | ||||
|   PROCEDURE log(x: REAL): REAL;	(* log with base 10 *) | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longlog(LONG(x))); | ||||
|   END log; | ||||
| 
 | ||||
|   PROCEDURE longlog(x: LONGREAL): LONGREAL;	(* log with base 10 *) | ||||
|   BEGIN | ||||
| 	RETURN longln(x)/LONG(ln10); | ||||
|   END longlog; | ||||
| 
 | ||||
|   (* trigonometric functions; arguments in radians *) | ||||
| 
 | ||||
|   PROCEDURE sin(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longsin(LONG(x))); | ||||
|   END sin; | ||||
| 
 | ||||
|   PROCEDURE longsin(x: LONGREAL): LONGREAL; | ||||
|     CONST | ||||
| 	a2  = -0.1666666664D; | ||||
| 	a4  =  0.0083333315D; | ||||
| 	a6  = -0.0001984090D; | ||||
| 	a8  =  0.0000027526D; | ||||
| 	a10 = -0.0000000239D; | ||||
|     VAR | ||||
| 	xsqr: LONGREAL; | ||||
| 	neg: BOOLEAN; | ||||
|   BEGIN | ||||
| 	neg := FALSE; | ||||
| 	IF x < 0.0D THEN | ||||
| 		neg := TRUE; | ||||
| 		x := -x; | ||||
| 	END; | ||||
| 	x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi); | ||||
| 	IF x >= LONG(pi) THEN | ||||
| 		neg := NOT neg; | ||||
| 		x := x - LONG(pi); | ||||
| 	END; | ||||
| 	IF x > LONG(halfpi) THEN | ||||
| 		x := LONG(pi) - x; | ||||
| 	END; | ||||
| 	xsqr := x * x; | ||||
| 	x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10))))); | ||||
| 	IF neg THEN RETURN -x; END; | ||||
| 	RETURN x; | ||||
|   END longsin; | ||||
| 
 | ||||
|   PROCEDURE cos(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longcos(LONG(x))); | ||||
|   END cos; | ||||
| 
 | ||||
|   PROCEDURE longcos(x: LONGREAL): LONGREAL; | ||||
|     CONST | ||||
| 	a2  = -0.4999999963D; | ||||
| 	a4  =  0.0416666418D; | ||||
| 	a6  = -0.0013888397D; | ||||
| 	a8  =  0.0000247609D; | ||||
| 	a10 = -0.0000002605D; | ||||
|     VAR | ||||
| 	xsqr: LONGREAL; | ||||
| 	neg: BOOLEAN; | ||||
|   BEGIN | ||||
| 	neg := FALSE; | ||||
| 	IF x < 0.0D THEN x := -x; END; | ||||
| 	x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi); | ||||
| 	IF x >= LONG(pi) THEN | ||||
| 		x := LONG(twicepi) - x; | ||||
| 	END; | ||||
| 	IF x > LONG(halfpi) THEN | ||||
| 		neg := NOT neg; | ||||
| 		x := LONG(pi) - x; | ||||
| 	END; | ||||
| 	xsqr := x * x; | ||||
| 	x := 1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10)))); | ||||
| 	IF neg THEN RETURN -x; END; | ||||
| 	RETURN x; | ||||
|   END longcos; | ||||
| 
 | ||||
|   PROCEDURE tan(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longtan(LONG(x))); | ||||
|   END tan; | ||||
| 
 | ||||
|   PROCEDURE longtan(x: LONGREAL): LONGREAL; | ||||
|     VAR cosinus: LONGREAL; | ||||
|   BEGIN | ||||
| 	cosinus := longcos(x); | ||||
| 	IF cosinus = 0.0D THEN | ||||
| 		(* ??? *) | ||||
| 		RETURN 0.0D; | ||||
| 	END; | ||||
| 	RETURN longsin(x)/cosinus; | ||||
|   END longtan; | ||||
| 
 | ||||
|   PROCEDURE arcsin(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longarcsin(LONG(x))); | ||||
|   END arcsin; | ||||
| 
 | ||||
|   PROCEDURE longarcsin(x: LONGREAL): LONGREAL; | ||||
|     CONST | ||||
| 	a0 =  1.5707963050D; | ||||
| 	a1 = -0.2145988016D; | ||||
| 	a2 =  0.0889789874D; | ||||
| 	a3 = -0.0501743046D; | ||||
| 	a4 =  0.0308918810D; | ||||
| 	a5 = -0.0170881256D; | ||||
| 	a6 =  0.0066700901D; | ||||
| 	a7 = -0.0012624911D; | ||||
|   BEGIN | ||||
| 	IF x < 0.0D THEN x := -x; END; | ||||
| 	IF x > 1.0D THEN | ||||
| 		(* ??? *) | ||||
| 		RETURN 0.0D; | ||||
| 	END; | ||||
| 	RETURN LONG(halfpi) - | ||||
| 		longsqrt(1.0D - x)*(a0+x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7))))))); | ||||
|   END longarcsin; | ||||
| 
 | ||||
|   PROCEDURE arccos(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longarccos(LONG(x))); | ||||
|   END arccos; | ||||
| 
 | ||||
|   PROCEDURE longarccos(x: LONGREAL): LONGREAL; | ||||
|   BEGIN | ||||
| 	RETURN LONG(halfpi) - longarcsin(x); | ||||
|   END longarccos; | ||||
| 
 | ||||
|   PROCEDURE arctan(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longarctan(LONG(x))); | ||||
|   END arctan; | ||||
| 
 | ||||
|   PROCEDURE longarctan(x: LONGREAL): LONGREAL; | ||||
|     CONST | ||||
| 	a2  = -0.3333314528D; | ||||
| 	a4  =  0.1999355085D; | ||||
| 	a6  = -0.1420889944D; | ||||
| 	a8  =  0.1065626393D; | ||||
| 	a10 = -0.0752896400D; | ||||
| 	a12 =  0.0429096318D; | ||||
| 	a14 = -0.0161657367D; | ||||
| 	a16 =  0.0028662257D; | ||||
|     VAR | ||||
| 	xsqr: LONGREAL; | ||||
| 	rev: BOOLEAN; | ||||
| 	neg: BOOLEAN; | ||||
|   BEGIN | ||||
| 	rev := FALSE; | ||||
| 	neg := FALSE; | ||||
| 	IF x < 0.0D THEN | ||||
| 		neg := TRUE; | ||||
| 		x := -x; | ||||
| 	END; | ||||
| 	IF x > 1.0D THEN | ||||
| 		rev := TRUE; | ||||
| 		x := 1.0D / x; | ||||
| 	END; | ||||
| 	xsqr := x * x; | ||||
| 	x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*(a10+xsqr*(a12+xsqr*(a14+xsqr*a16)))))))); | ||||
| 	IF rev THEN | ||||
| 		x := LONG(quartpi) - x; | ||||
| 	END; | ||||
| 	IF neg THEN RETURN -x; END; | ||||
| 	RETURN x; | ||||
|   END longarctan; | ||||
| 
 | ||||
|   (* hyperbolic functions *) | ||||
| 
 | ||||
|   PROCEDURE sinh(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longsinh(LONG(x))); | ||||
|   END sinh; | ||||
| 
 | ||||
|   PROCEDURE longsinh(x: LONGREAL): LONGREAL; | ||||
|     VAR expx: LONGREAL; | ||||
|   BEGIN | ||||
| 	expx := longexp(x); | ||||
| 	RETURN (expx - 1.0D/expx)/2.0D; | ||||
|   END longsinh; | ||||
| 
 | ||||
|   PROCEDURE cosh(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longcosh(LONG(x))); | ||||
|   END cosh; | ||||
| 
 | ||||
|   PROCEDURE longcosh(x: LONGREAL): LONGREAL; | ||||
|     VAR expx: LONGREAL; | ||||
|   BEGIN | ||||
| 	expx := longexp(x); | ||||
| 	RETURN (expx + 1.0D/expx)/2.0D; | ||||
|   END longcosh; | ||||
| 
 | ||||
|   PROCEDURE tanh(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longtanh(LONG(x))); | ||||
|   END tanh; | ||||
| 
 | ||||
|   PROCEDURE longtanh(x: LONGREAL): LONGREAL; | ||||
|     VAR expx: LONGREAL; | ||||
|   BEGIN | ||||
| 	expx := longexp(x); | ||||
| 	RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx); | ||||
|   END longtanh; | ||||
| 
 | ||||
|   PROCEDURE arcsinh(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longarcsinh(LONG(x))); | ||||
|   END arcsinh; | ||||
| 
 | ||||
|   PROCEDURE longarcsinh(x: LONGREAL): LONGREAL; | ||||
|     VAR neg: BOOLEAN; | ||||
|   BEGIN | ||||
| 	neg := FALSE; | ||||
| 	IF x < 0.0D THEN | ||||
| 		neg := TRUE; | ||||
| 		x := -x; | ||||
| 	END; | ||||
| 	x := longln(x + longsqrt(x*x+1.0D)); | ||||
| 	IF neg THEN RETURN -x; END; | ||||
| 	RETURN x; | ||||
|   END longarcsinh; | ||||
| 
 | ||||
|   PROCEDURE arccosh(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longarccosh(LONG(x))); | ||||
|   END arccosh; | ||||
| 
 | ||||
|   PROCEDURE longarccosh(x: LONGREAL): LONGREAL; | ||||
|   BEGIN | ||||
| 	IF x < 1.0D THEN | ||||
| 		(* ??? *) | ||||
| 		RETURN 0.0D; | ||||
| 	END; | ||||
| 	RETURN longln(x + longsqrt(x*x - 1.0D)); | ||||
|   END longarccosh; | ||||
| 
 | ||||
|   PROCEDURE arctanh(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longarctanh(LONG(x))); | ||||
|   END arctanh; | ||||
| 
 | ||||
|   PROCEDURE longarctanh(x: LONGREAL): LONGREAL; | ||||
|   BEGIN | ||||
| 	IF (x <= -1.0D) OR (x >= 1.0D) THEN | ||||
| 		(* ??? *) | ||||
| 		RETURN 0.0D; | ||||
| 	END; | ||||
| 	RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D; | ||||
|   END longarctanh; | ||||
| 
 | ||||
|   (* conversions *) | ||||
| 
 | ||||
|   PROCEDURE RadianToDegree(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longRadianToDegree(LONG(x))); | ||||
|   END RadianToDegree; | ||||
| 
 | ||||
|   PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL; | ||||
|   BEGIN | ||||
| 	RETURN x * OneRadianInDegrees; | ||||
|   END longRadianToDegree; | ||||
| 
 | ||||
|   PROCEDURE DegreeToRadian(x: REAL): REAL; | ||||
|   BEGIN | ||||
| 	RETURN SHORT(longDegreeToRadian(LONG(x))); | ||||
|   END DegreeToRadian; | ||||
| 
 | ||||
|   PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL; | ||||
|   BEGIN | ||||
| 	RETURN x * OneDegreeInRadians; | ||||
|   END longDegreeToRadian; | ||||
| 
 | ||||
| END Mathlib. | ||||
|  | @ -2,21 +2,30 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 
 | ||||
|   FROM FIFFEF IMPORT FIF, FEF; | ||||
| 
 | ||||
|   PROCEDURE RealToString(r: REAL; | ||||
|   PROCEDURE RealToString(arg: REAL; | ||||
| 		width, digits: INTEGER; | ||||
| 		VAR str: ARRAY OF CHAR; | ||||
| 		VAR ok: BOOLEAN); | ||||
|   BEGIN | ||||
| 	LongRealToString(LONG(arg), width, digits, str, ok); | ||||
|   END RealToString; | ||||
| 
 | ||||
|   PROCEDURE LongRealToString(arg: LONGREAL; | ||||
| 		width, digits: INTEGER; | ||||
| 		VAR str: ARRAY OF CHAR; | ||||
| 		VAR ok: BOOLEAN); | ||||
|     VAR	pointpos: INTEGER; | ||||
| 	i: CARDINAL; | ||||
| 	ecvtflag: BOOLEAN; | ||||
| 	intpart, fractpart: REAL; | ||||
| 	r, intpart, fractpart: LONGREAL; | ||||
| 	ind1, ind2 : CARDINAL; | ||||
| 	sign: BOOLEAN; | ||||
| 	tmp : CHAR; | ||||
| 	ndigits: CARDINAL; | ||||
| 	dummy, dig: REAL; | ||||
| 	dummy, dig: LONGREAL; | ||||
| 
 | ||||
|   BEGIN | ||||
| 	r := arg; | ||||
| 	DEC(width); | ||||
| 	IF digits < 0 THEN | ||||
| 		ecvtflag := TRUE; | ||||
|  | @ -27,9 +36,10 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 	END; | ||||
| 	IF HIGH(str) < ndigits + 3 THEN str[0] := 0C; ok := FALSE; RETURN END; | ||||
| 	pointpos := 0; | ||||
| 	sign := r < 0.0; | ||||
| 	sign := r < 0.0D; | ||||
| 	IF sign THEN r := -r END; | ||||
| 	r := FIF(r, 1.0, intpart); | ||||
| 	r := FIF(r, 1.0D, intpart); | ||||
| 	fractpart := r; | ||||
| 	pointpos := 0; | ||||
| 	ind1 := 0; | ||||
| 	ok := TRUE; | ||||
|  | @ -37,9 +47,9 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 	  Do integer part, which is now in "intpart". "r" now contains the | ||||
| 	  fraction part. | ||||
| 	*) | ||||
| 	IF intpart # 0.0 THEN | ||||
| 	IF intpart # 0.0D THEN | ||||
| 		ind2 := 0; | ||||
| 		WHILE intpart # 0.0 DO | ||||
| 		WHILE intpart # 0.0D DO | ||||
| 			IF ind2 > HIGH(str) THEN | ||||
| 				IF NOT ecvtflag THEN | ||||
| 					str[0] := 0C; | ||||
|  | @ -51,11 +61,11 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 				END; | ||||
| 				DEC(ind2); | ||||
| 			END; | ||||
| 			dummy := FIF(FIF(intpart, 0.1, intpart),10.0, dig); | ||||
| 			IF (dummy > 0.5) AND (dig < 9.0) THEN | ||||
| 				dig := dig + 1.0; | ||||
| 			dummy := FIF(FIF(intpart, 0.1D, intpart),10.0D, dig); | ||||
| 			IF (dummy > 0.5D) AND (dig < 9.0D) THEN | ||||
| 				dig := dig + 1.0D; | ||||
| 			END; | ||||
| 			str[ind2] := CHR(TRUNC(dig+0.5) + ORD('0')); | ||||
| 			str[ind2] := CHR(TRUNC(dig+0.5D) + ORD('0')); | ||||
| 			INC(ind2); | ||||
| 			INC(pointpos); | ||||
| 		END; | ||||
|  | @ -70,10 +80,10 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 		END; | ||||
| 	ELSE | ||||
| 		INC(pointpos); | ||||
| 		IF r > 0.0 THEN | ||||
| 			WHILE r < 1.0 DO | ||||
| 		IF r > 0.0D THEN | ||||
| 			WHILE r < 1.0D DO | ||||
| 				fractpart := r; | ||||
| 				r := r * 10.0; | ||||
| 				r := r * 10.0D; | ||||
| 				DEC(pointpos); | ||||
| 			END; | ||||
| 		END; | ||||
|  | @ -94,7 +104,7 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 		RETURN; | ||||
| 	END; | ||||
| 	WHILE ind1 <= ind2 DO | ||||
| 		fractpart := FIF(fractpart, 10.0, r); | ||||
| 		fractpart := FIF(fractpart, 10.0D, r); | ||||
| 		str[ind1] := CHR(TRUNC(r)+ORD('0')); | ||||
| 		INC(ind1); | ||||
| 	END; | ||||
|  | @ -191,17 +201,26 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 	END; | ||||
| 	IF (ind1+1) <= HIGH(str) THEN str[ind1+1] := 0C; END; | ||||
| 
 | ||||
|   END RealToString; | ||||
|   END LongRealToString; | ||||
| 
 | ||||
| 	 | ||||
|   PROCEDURE StringToReal(str: ARRAY OF CHAR; | ||||
| 			 VAR r: REAL; VAR ok: BOOLEAN); | ||||
|     VAR x: LONGREAL; | ||||
|   BEGIN | ||||
| 	StringToLongReal(str, x, ok); | ||||
| 	IF ok THEN | ||||
| 		r := x; | ||||
| 	END; | ||||
|   END StringToReal; | ||||
| 
 | ||||
|     CONST	BIG = 1.0E17; | ||||
|   PROCEDURE StringToLongReal(str: ARRAY OF CHAR; | ||||
| 			 VAR r: LONGREAL; VAR ok: BOOLEAN); | ||||
|     CONST	BIG = 1.0D17; | ||||
|     TYPE	SETOFCHAR = SET OF CHAR; | ||||
|     VAR		pow10 : INTEGER; | ||||
| 		i : INTEGER; | ||||
| 		e : REAL; | ||||
| 		e : LONGREAL; | ||||
| 		ch : CHAR; | ||||
| 		signed: BOOLEAN; | ||||
| 		signedexp: BOOLEAN; | ||||
|  | @ -209,11 +228,11 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 
 | ||||
|     PROCEDURE dig(ch: CARDINAL); | ||||
|     BEGIN | ||||
| 	IF r>BIG THEN INC(pow10) ELSE r:= 10.0*r + FLOAT(ch) END; | ||||
| 	IF r>BIG THEN INC(pow10) ELSE r:= 10.0D*r + FLOATD(ch) END; | ||||
|     END dig; | ||||
| 
 | ||||
|   BEGIN | ||||
| 	r := 0.0; | ||||
| 	r := 0.0D; | ||||
| 	pow10 := 0; | ||||
| 	iB := 0; | ||||
| 	ok := TRUE; | ||||
|  | @ -276,10 +295,10 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 		pow10 := pow10 + i; | ||||
| 	END; | ||||
| 	IF pow10 < 0 THEN i := -pow10; ELSE i := pow10; END; | ||||
| 	e := 1.0; | ||||
| 	e := 1.0D; | ||||
| 	DEC(i); | ||||
| 	WHILE i >= 0 DO | ||||
| 		e := e * 10.0; | ||||
| 		e := e * 10.0D; | ||||
| 		DEC(i) | ||||
| 	END; | ||||
| 	IF pow10<0 THEN | ||||
|  | @ -289,6 +308,6 @@ IMPLEMENTATION MODULE RealConversions; | |||
| 	END; | ||||
| 	IF signed THEN r := -r; END; | ||||
| 	IF (iB <= HIGH(str)) AND (ORD(ch) > ORD(' ')) THEN ok := FALSE; END | ||||
|   END StringToReal; | ||||
|   END StringToLongReal; | ||||
| 
 | ||||
| END RealConversions. | ||||
|  |  | |||
		Loading…
	
	Add table
		
		Reference in a new issue