use new math routines

This commit is contained in:
ceriel 1989-06-19 15:56:30 +00:00
parent d4389da709
commit 8b702734cf
4 changed files with 154 additions and 213 deletions

View file

@ -14,90 +14,55 @@ double
_atn(x)
double x;
{
/* The interval [0, infinity) is treated as follows:
Define partition points Xi
X0 = 0
X1 = tan(pi/16)
X2 = tan(3pi/16)
X3 = tan(5pi/16)
X4 = tan(7pi/16)
X5 = infinity
and evaluation nodes xi
x2 = tan(2pi/16)
x3 = tan(4pi/16)
x4 = tan(6pi/16)
x5 = infinity
An argument x in [Xn-1, Xn] is now reduced to an argument
t in [-X1, X1] by the following formulas:
t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x)
arctan(x) = arctan(xi) + arctan(t)
For the interval [0, p/16] an approximation is used:
arctan(x) = x * P(x*x)/Q(x*x)
/* Algorithm and coefficients from:
"Software manual for the elementary functions"
by W.J. Cody and W. Waite, Prentice-Hall, 1980
*/
static struct precomputed {
double X; /* partition point */
double arctan; /* arctan of evaluation node */
double one_o_x; /* 1 / xn */
double one_o_xsq_p_1; /* 1 / (xn*xn) + 1 */
} prec[5] = {
{ 0.19891236737965800691159762264467622,
0.0,
0.0, /* these don't matter */
0.0 } ,
{ 0.66817863791929891999775768652308076, /* tan(3pi/16) */
M_PI_8,
2.41421356237309504880168872420969808,
6.82842712474619009760337744841939616 },
{ 1.49660576266548901760113513494247691, /* tan(5pi/16) */
M_PI_4,
1.0,
2.0 },
{ 5.02733949212584810451497507106407238, /* tan(7pi/16) */
M_3PI_8,
0.41421356237309504880168872420969808,
1.17157287525380998659662255158060384 },
{ MAXDOUBLE,
M_PI_2,
0.0,
1.0 }};
/* Hart & Cheney # 5037 */
static double p[5] = {
0.7698297257888171026986294745e+03,
0.1557282793158363491416585283e+04,
0.1033384651675161628243434662e+04,
0.2485841954911840502660889866e+03,
0.1566564964979791769948970100e+02
static double p[] = {
-0.13688768894191926929e+2,
-0.20505855195861651981e+2,
-0.84946240351320683534e+1,
-0.83758299368150059274e+0
};
static double q[] = {
0.41066306682575781263e+2,
0.86157349597130242515e+2,
0.59578436142597344465e+2,
0.15024001160028576121e+2,
1.0
};
static double a[] = {
0.0,
0.52359877559829887307710723554658381, /* pi/6 */
M_PI_2,
1.04719755119659774615421446109316763 /* pi/3 */
};
static double q[6] = {
0.7698297257888171026986294911e+03,
0.1813892701754635858982709369e+04,
0.1484049607102276827437401170e+04,
0.4904645326203706217748848797e+03,
0.5593479839280348664778328000e+02,
0.1000000000000000000000000000e+01
};
int neg = x < 0;
int n;
double g;
int negative = x < 0.0;
register struct precomputed *pr = prec;
if (negative) {
if (neg) {
x = -x;
}
while (x > pr->X) pr++;
if (pr != prec) {
x = pr->arctan +
_atn(pr->one_o_x - pr->one_o_xsq_p_1/(pr->one_o_x + x));
if (x > 1.0) {
x = 1.0/x;
n = 2;
}
else {
double xsq = x*x;
else n = 0;
x = x * POLYNOM4(xsq, p)/POLYNOM5(xsq, q);
if (x > 0.26794919243112270647) { /* 2-sqtr(3) */
n = n + 1;
x = (((0.73205080756887729353*x-0.5)-0.5)+x)/
(1.73205080756887729353+x);
}
return negative ? -x : x;
/* ??? avoid underflow ??? */
g = x * x;
x += x * g * POLYNOM3(g, p) / POLYNOM4(g, q);
if (n > 1) x = -x;
x += a[n];
return neg ? -x : x;
}

View file

@ -10,19 +10,6 @@
#define __NO_DEFS
#include <math.h>
static double
floor(x)
double x;
{
extern double _fif();
double val;
return _fif(x, 1.0, &val) < 0 ? val - 1.0 : val ;
/* this also works if _fif always returns a positive
fractional part
*/
}
static double
ldexp(fl,exp)
double fl;
@ -57,52 +44,54 @@ ldexp(fl,exp)
double
_exp(x)
double x;
double x;
{
/* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] */
/* Hart & Cheney #1069 */
/* Algorithm and coefficients from:
"Software manual for the elementary functions"
by W.J. Cody and W. Waite, Prentice-Hall, 1980
*/
static double p[3] = {
0.2080384346694663001443843411e+07,
0.3028697169744036299076048876e+05,
0.6061485330061080841615584556e+02
static double p[] = {
0.25000000000000000000e+0,
0.75753180159422776666e-2,
0.31555192765684646356e-4
};
static double q[4] = {
0.6002720360238832528230907598e+07,
0.3277251518082914423057964422e+06,
0.1749287689093076403844945335e+04,
0.1000000000000000000000000000e+01
static double q[] = {
0.50000000000000000000e+0,
0.56817302698551221787e-1,
0.63121894374398503557e-3,
0.75104028399870046114e-6
};
double xn, g;
int n;
int negative = x < 0;
int negative = x < 0;
int ipart, large = 0;
double xsqr, xPxx, Qxx;
if (x < M_LN_MIN_D) {
if (x <= M_LN_MIN_D) {
return M_MIN_D;
}
if (x >= M_LN_MAX_D) {
if (x > M_LN_MAX_D) error(3);
return M_MAX_D;
}
if (negative) x = -x;
/* ??? avoid underflow ??? */
n = x * M_LOG2E + 0.5; /* 1/ln(2) = log2(e), 0.5 added for rounding */
xn = n;
{
double x1 = (long) x;
double x2 = x - x1;
g = ((x1-xn*0.693359375)+x2) - xn*(-2.1219444005469058277e-4);
}
if (negative) {
x = -x;
g = -g;
n = -n;
}
x /= M_LN2;
ipart = floor(x);
x -= ipart;
if (x > 0.5) {
large = 1;
x -= 0.5;
}
xsqr = x * x;
xPxx = x * POLYNOM2(xsqr, p);
Qxx = POLYNOM3(xsqr, q);
x = (Qxx + xPxx) / (Qxx - xPxx);
if (large) x *= M_SQRT2;
x = ldexp(x, ipart);
if (negative) return 1.0/x;
return x;
xn = g * g;
x = g * POLYNOM2(xn, p);
n += 1;
return (ldexp(0.5 + x/(POLYNOM3(xn, q) - x), n));
}

View file

@ -14,29 +14,25 @@ double
_log(x)
double x;
{
/* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)]
/* Algorithm and coefficients from:
"Software manual for the elementary functions"
by W.J. Cody and W. Waite, Prentice-Hall, 1980
*/
/* Hart & Cheney #2707 */
static double p[5] = {
0.7504094990777122217455611007e+02,
-0.1345669115050430235318253537e+03,
0.7413719213248602512779336470e+02,
-0.1277249755012330819984385000e+02,
0.3327108381087686938144000000e+00
static double a[] = {
-0.64124943423745581147e2,
0.16383943563021534222e2,
-0.78956112887491257267e0
};
static double q[5] = {
0.3752047495388561108727775374e+02,
-0.7979028073715004879439951583e+02,
0.5616126132118257292058560360e+02,
-0.1450868091858082685362325000e+02,
0.1000000000000000000000000000e+01
static double b[] = {
-0.76949932108494879777e3,
0.31203222091924532844e3,
-0.35667977739034646171e2,
1.0
};
extern double _fef();
double z, zsqr;
int exponent;
double znum, zden, z, w;
int exponent;
if (x <= 0) {
error(3);
@ -44,11 +40,18 @@ _log(x)
}
x = _fef(x, &exponent);
while (x < M_1_SQRT2) {
x += x;
if (x > M_1_SQRT2) {
znum = (x - 0.5) - 0.5;
zden = x * 0.5 + 0.5;
}
else {
znum = x - 0.5;
zden = znum * 0.5 + 0.5;
exponent--;
}
z = (x-1)/(x+1);
zsqr = z*z;
return z * POLYNOM4(zsqr, p) / POLYNOM4(zsqr, q) + exponent * M_LN2;
z = znum/zden; w = z * z;
x = z + z * w * (POLYNOM2(w,a)/POLYNOM3(w,b));
z = exponent;
x += z * (-2.121944400546905827679e-4);
return x + z * 0.693359375;
}

View file

@ -11,90 +11,74 @@
#include <math.h>
static double
sinus(x, quadrant)
sinus(x, cos_flag)
double x;
{
/* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] */
/* Hart & Cheney # 3374 */
/* Algorithm and coefficients from:
"Software manual for the elementary functions"
by W.J. Cody and W. Waite, Prentice-Hall, 1980
*/
static double p[6] = {
0.4857791909822798473837058825e+10,
-0.1808816670894030772075877725e+10,
0.1724314784722489597789244188e+09,
-0.6351331748520454245913645971e+07,
0.1002087631419532326179108883e+06,
-0.5830988897678192576148973679e+03
static double r[] = {
-0.16666666666666665052e+0,
0.83333333333331650314e-2,
-0.19841269841201840457e-3,
0.27557319210152756119e-5,
-0.25052106798274584544e-7,
0.16058936490371589114e-9,
-0.76429178068910467734e-12,
0.27204790957888846175e-14
};
static double q[6] = {
0.3092566379840468199410228418e+10,
0.1202384907680254190870913060e+09,
0.2321427631602460953669856368e+07,
0.2848331644063908832127222835e+05,
0.2287602116741682420054505174e+03,
0.1000000000000000000000000000e+01
};
double xsqr;
int t;
double xsqr;
double y;
int neg = 0;
if (x < 0) {
quadrant += 2;
x = -x;
neg = 1;
}
if (M_PI_2 - x == M_PI_2) {
switch(quadrant) {
case 0:
case 2:
return 0.0;
case 1:
return 1.0;
case 3:
return -1.0;
}
if (cos_flag) {
neg = 0;
y = M_PI_2 + x;
}
if (x >= M_2PI) {
if (x <= 0x7fffffff) {
/* Use extended precision to calculate reduced argument.
Split 2pi in 2 parts a1 and a2, of which the first only
uses some bits of the mantissa, so that n * a1 is
exactly representable, where n is the integer part of
x/pi.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
*/
#define A1 6.2822265625
#define A2 0.00095874467958647692528676655900576
double n = (long) (x / M_2PI);
double x1 = (long) x;
double x2 = x - x1;
x = x1 - n * A1;
else y = x;
/* ??? avoid loss of significance, if y is too large, error ??? */
y = y * M_1_PI + 0.5;
/* Use extended precision to calculate reduced argument.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
*/
#define A1 3.1416015625
#define A2 -8.908910206761537356617e-6
{
double x1, x2;
extern double _fif();
_fif(y, 1.0, &y);
if (_fif(y, 0.5, &x1)) neg = !neg;
if (cos_flag) y -= 0.5;
x2 = _fif(x, 1.0, &x1);
x = x1 - y * A1;
x += x2;
x -= n * A2;
x -= y * A2;
#undef A1
#undef A2
}
else {
extern double _fif();
double dummy;
}
x = _fif(x/M_2PI, 1.0, &dummy) * M_2PI;
}
}
x /= M_PI_2;
t = x;
x -= t;
quadrant = (quadrant + (int)(t % 4)) % 4;
if (quadrant & 01) {
x = 1 - x;
}
if (quadrant > 1) {
if (x < 0) {
neg = !neg;
x = -x;
}
xsqr = x * x;
x = x * POLYNOM5(xsqr, p) / POLYNOM5(xsqr, q);
return x;
/* ??? avoid underflow ??? */
y = x * x;
x += x * y * POLYNOM7(y, r);
return neg ? -x : x;
}
double