Added version for machines with proper 4-byte operations

This commit is contained in:
ceriel 1988-08-10 10:07:53 +00:00
parent e47418efff
commit bb46f5218c

View file

@ -17,19 +17,28 @@
November 15, 1984
This is a routine to do the work.
It is based on the partial products method
There are two versions:
One is based on the partial products method
and makes no use possible machine instructions
to divide (hardware dividers).
The other is used when USE_DIVIDE is defined. It is much faster on
machines with fast 4 byte operations.
*/
/********************************************************/
div_ext(e1,e2)
EXTEND *e1,*e2;
{
short count;
short error = 0;
unsigned long result[2];
register unsigned long *lp;
#ifndef USE_DIVIDE
short count;
#else
unsigned short u[9], v[5];
register int j;
register unsigned short *u_p = u;
#endif
if ((e2->m1 | e2->m2) == 0) {
/*
@ -44,6 +53,7 @@ EXTEND *e1,*e2;
e1->exp = 0; /* make sure */
return;
}
#ifndef USE_DIVIDE
/*
* numbers are right shifted one bit to make sure
* that m1 is quaranteed to be larger if its
@ -53,6 +63,7 @@ EXTEND *e1,*e2;
b64_rsft(&e2->m1); /* 64 bit shift right */
e1->exp++;
e2->exp++;
#endif
/* check for underflow, divide by zero, etc */
e1->sign ^= e2->sign;
e1->exp -= e2->exp;
@ -76,15 +87,14 @@ EXTEND *e1,*e2;
return;
}
#ifndef USE_DIVIDE
/* do division of mantissas */
/* uses partial product method */
/* init control variables */
count = 64;
lp = result; /* result[0] == high word */
/* result[0] == low word */
*lp++ = 0L; /* high word */
*lp-- = 0L; /* low word */
result[0] = 0L;
result[1] = 0L;
/* partial product division loop */
@ -146,6 +156,95 @@ EXTEND *e1,*e2;
*lp <<= count;
}
}
#else USE_DIVIDE
u[4] = (e1->m2 & 1) << 15;
b64_rsft(&(e1->m1));
u[0] = e1->m1 >> 16;
u[1] = e1->m1;
u[2] = e1->m2 >> 16;
u[3] = e1->m2;
u[5] = 0; u[6] = 0; u[7] = 0;
v[1] = e2->m1 >> 16;
v[2] = e2->m1;
v[3] = e2->m2 >> 16;
v[4] = e2->m2;
result[0] = 0;
result[1] = 0;
lp = result;
/*
* Use an algorithm of Knuth (The art of programming, Seminumerical
* algorithms), to divide u by v. u and v are both seen as numbers
* with base 65536.
*/
for (j = 0; j <= 3; j++, u_p++) {
unsigned long q_est, temp;
if (j == 2) lp++;
if (u_p[0] == 0 && u_p[1] < v[1]) continue;
temp = ((unsigned long)u_p[0] << 16) + u_p[1];
if (u_p[0] >= v[1]) {
q_est = 0x0000FFFFL;
}
else {
q_est = temp / v[1];
}
temp -= q_est * v[1];
while (temp < 0x10000 && v[2]*q_est > ((temp<<16)+u_p[2])) {
q_est--;
temp += v[1];
}
/* Now, according to Knuth, we have an estimate of the
quotient, that is either correct or one too big, but
almost always correct.
*/
if (q_est != 0) {
int i;
unsigned long k = 0;
int borrow = 0;
for (i = 4; i > 0; i--) {
unsigned long tmp = q_est * v[i] + k + borrow;
unsigned short md = tmp;
borrow = (md > u_p[i]);
u_p[i] -= md;
k = tmp >> 16;
}
k += borrow;
borrow = u_p[0] < k;
u_p[0] -= k;
if (borrow) {
/* So, this does not happen often; the estimate
was one too big; correct this
*/
*lp |= (j & 1) ? (q_est - 1) : ((q_est-1)<<16);
borrow = 0;
for (i = 4; i > 0; i--) {
unsigned long tmp
= v[i]+(unsigned long)u_p[i]+borrow;
u_p[i] = tmp;
borrow = tmp >> 16;
}
u_p[0] += borrow;
}
else *lp |= (j & 1) ? q_est : (q_est<<16);
}
}
#ifdef EXCEPTION_INEXACT
u_p = &u[0];
for (j = 7; j >= 0; j--) {
if (*u_p++) {
error = 1;
break;
}
}
#endif
#endif
#ifdef EXCEPTION_INEXACT
if (error) {
/*
@ -161,5 +260,6 @@ EXTEND *e1,*e2;
#endif
e1->m1 = result[0];
e1->m2 = result[1];
nrm_ext(e1);
}