Initial revision

This commit is contained in:
eck 1989-05-10 16:08:14 +00:00
parent f0cec58cf9
commit d2f7f252b2
20 changed files with 905 additions and 0 deletions

View file

@ -0,0 +1,47 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
static double
asin_acos(double x, int cosfl)
{
int negative = x < 0;
if (negative) {
x = -x;
}
if (x > 1) {
errno = EDOM;
return 0;
}
if (x == 1) {
x = M_PI_2;
}
else x = atan(x/sqrt(1-x*x));
if (negative) x = -x;
if (cosfl) {
return M_PI_2 - x;
}
return x;
}
double
asin(double x)
{
return asin_acos(x, 0);
}
double
acos(double x)
{
return asin_acos(x, 1);
}

View file

@ -0,0 +1,104 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <float.h>
#include <math.h>
#include "localmath.h"
double
atan(double x)
{
/* The interval [0, infinity) is treated as follows:
Define partition points Xi
X0 = 0
X1 = tan(pi/16)
X2 = tan(3pi/16)
X3 = tan(5pi/16)
X4 = tan(7pi/16)
X5 = infinity
and evaluation nodes xi
x2 = tan(2pi/16)
x3 = tan(4pi/16)
x4 = tan(6pi/16)
x5 = infinity
An argument x in [Xn-1, Xn] is now reduced to an argument
t in [-X1, X1] by the following formulas:
t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x)
arctan(x) = arctan(xi) + arctan(t)
For the interval [0, p/16] an approximation is used:
arctan(x) = x * P(x*x)/Q(x*x)
*/
static struct precomputed {
double X; /* partition point */
double arctan; /* arctan of evaluation node */
double one_o_x; /* 1 / xn */
double one_o_xsq_p_1; /* 1 / (xn*xn) + 1 */
} prec[5] = {
{ 0.19891236737965800691159762264467622,
0.0,
0.0, /* these don't matter */
0.0 } ,
{ 0.66817863791929891999775768652308076, /* tan(3pi/16) */
M_PI_8,
2.41421356237309504880168872420969808,
6.82842712474619009760337744841939616 },
{ 1.49660576266548901760113513494247691, /* tan(5pi/16) */
M_PI_4,
1.0,
2.0 },
{ 5.02733949212584810451497507106407238, /* tan(7pi/16) */
M_3PI_8,
0.41421356237309504880168872420969808,
1.17157287525380998659662255158060384 },
{ DBL_MAX,
M_PI_2,
0.0,
1.0 }};
/* Hart & Cheney # 5037 */
static double p[5] = {
0.7698297257888171026986294745e+03,
0.1557282793158363491416585283e+04,
0.1033384651675161628243434662e+04,
0.2485841954911840502660889866e+03,
0.1566564964979791769948970100e+02
};
static double q[6] = {
0.7698297257888171026986294911e+03,
0.1813892701754635858982709369e+04,
0.1484049607102276827437401170e+04,
0.4904645326203706217748848797e+03,
0.5593479839280348664778328000e+02,
0.1000000000000000000000000000e+01
};
int negative = x < 0.0;
register struct precomputed *pr = prec;
if (negative) {
x = -x;
}
while (x > pr->X) pr++;
if (pr != prec) {
x = pr->arctan +
atan(pr->one_o_x - pr->one_o_xsq_p_1/(pr->one_o_x + x));
}
else {
double xsq = x*x;
x = x * POLYNOM4(xsq, p)/POLYNOM5(xsq, q);
}
return negative ? -x : x;
}

View file

@ -0,0 +1,42 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
atan2(double y, double x)
{
double absx, absy, val;
if (x == 0 && y == 0) {
errno = EDOM;
return 0;
}
absy = y < 0 ? -y : y;
absx = x < 0 ? -x : x;
if (absy - absx == absy) {
/* x negligible compared to y */
return y < 0 ? -M_PI_2 : M_PI_2;
}
if (absx - absy == absx) {
/* y negligible compared to x */
val = 0.0;
}
else val = atan(y/x);
if (x > 0) {
/* first or fourth quadrant; already correct */
return val;
}
if (y < 0) {
/* third quadrant */
return val - M_PI;
}
return val + M_PI;
}

View file

@ -0,0 +1,20 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <math.h>
double
ceil(double x)
{
double val;
return modf(x, &val) > 0 ? val + 1.0 : val ;
/* this also works if modf always returns a positive
fractional part
*/
}

View file

@ -0,0 +1,33 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
cosh(double x)
{
if (x < 0) {
x = -x;
}
if (x > M_LN_MAX_D) {
/* exp(x) would overflow */
if (x >= M_LN_MAX_D + M_LN2) {
/* not representable */
x = HUGE_VAL;
errno = ERANGE;
}
else x = exp (x - M_LN2);
}
else {
double expx = exp(x);
x = 0.5 * (expx + 1.0/expx);
}
return x;
}

View file

@ -0,0 +1,65 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <float.h>
#include <math.h>
#include "localmath.h"
double
exp(double x)
{
/* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] */
/* Hart & Cheney #1069 */
static double p[3] = {
0.2080384346694663001443843411e+07,
0.3028697169744036299076048876e+05,
0.6061485330061080841615584556e+02
};
static double q[4] = {
0.6002720360238832528230907598e+07,
0.3277251518082914423057964422e+06,
0.1749287689093076403844945335e+04,
0.1000000000000000000000000000e+01
};
int negative = x < 0;
int ipart, large = 0;
double xsqr, xPxx, Qxx;
if (x <= M_LN_MIN_D) {
if (x < M_LN_MIN_D) errno = ERANGE;
return DBL_MIN;
}
if (x >= M_LN_MAX_D) {
if (x > M_LN_MAX_D) errno = ERANGE;
return DBL_MAX;
}
if (negative) {
x = -x;
}
x /= M_LN2;
ipart = floor(x);
x -= ipart;
if (x > 0.5) {
large = 1;
x -= 0.5;
}
xsqr = x * x;
xPxx = x * POLYNOM2(xsqr, p);
Qxx = POLYNOM3(xsqr, q);
x = (Qxx + xPxx) / (Qxx - xPxx);
if (large) x *= M_SQRT2;
x = ldexp(x, ipart);
if (negative) return 1.0/x;
return x;
}

View file

@ -0,0 +1,13 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
double
fabs(double x)
{
return x < 0 ? -x : x;
}

View file

@ -0,0 +1,20 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <math.h>
double
floor(double x)
{
double val;
return modf(x, &val) < 0 ? val - 1.0 : val ;
/* this also works if modf always returns a positive
fractional part
*/
}

View file

@ -0,0 +1,20 @@
#
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* $Header$ */
mes 2,EM_WSIZE,EM_PSIZE
#ifndef NOFLOAT
exp $frexp
pro $frexp,0
lal 0
loi EM_DSIZE
fef EM_DSIZE
lal EM_DSIZE
loi EM_PSIZE
sti EM_WSIZE
ret EM_DSIZE
end
#endif

View file

@ -0,0 +1,36 @@
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* $Header$ */
#include <math.h>
double
ldexp(double fl, int exp)
{
int sign = 1;
int currexp;
if (fl<0) {
fl = -fl;
sign = -1;
}
fl = frexp(fl,&currexp);
exp += currexp;
if (exp > 0) {
while (exp>30) {
fl *= (double) (1L << 30);
exp -= 30;
}
fl *= (double) (1L << exp);
}
else {
while (exp<-30) {
fl /= (double) (1L << 30);
exp += 30;
}
fl /= (double) (1L << -exp);
}
return sign * fl;
}

View file

@ -0,0 +1,42 @@
/*
* localmath.h - This header is used by the mathematical library.
*/
/* $Header$ */
/* some constants (Hart & Cheney) */
#define M_PI 3.14159265358979323846264338327950288
#define M_2PI 6.28318530717958647692528676655900576
#define M_3PI_4 2.35619449019234492884698253745962716
#define M_PI_2 1.57079632679489661923132169163975144
#define M_3PI_8 1.17809724509617246442349126872981358
#define M_PI_4 0.78539816339744830961566084581987572
#define M_PI_8 0.39269908169872415480783042290993786
#define M_1_PI 0.31830988618379067153776752674502872
#define M_2_PI 0.63661977236758134307553505349005744
#define M_4_PI 1.27323954473516268615107010698011488
#define M_E 2.71828182845904523536028747135266250
#define M_LOG2E 1.44269504088896340735992468100189213
#define M_LOG10E 0.43429448190325182765112891891660508
#define M_LN2 0.69314718055994530941723212145817657
#define M_LN10 2.30258509299404568401799145468436421
#define M_SQRT2 1.41421356237309504880168872420969808
#define M_1_SQRT2 0.70710678118654752440084436210484904
#define M_EULER 0.57721566490153286060651209008240243
/* macros for constructing polynomials */
#define POLYNOM1(x, a) ((a)[1]*(x)+(a)[0])
#define POLYNOM2(x, a) (POLYNOM1((x),(a)+1)*(x)+(a)[0])
#define POLYNOM3(x, a) (POLYNOM2((x),(a)+1)*(x)+(a)[0])
#define POLYNOM4(x, a) (POLYNOM3((x),(a)+1)*(x)+(a)[0])
#define POLYNOM5(x, a) (POLYNOM4((x),(a)+1)*(x)+(a)[0])
#define POLYNOM6(x, a) (POLYNOM5((x),(a)+1)*(x)+(a)[0])
#define POLYNOM7(x, a) (POLYNOM6((x),(a)+1)*(x)+(a)[0])
#define POLYNOM8(x, a) (POLYNOM7((x),(a)+1)*(x)+(a)[0])
#define POLYNOM9(x, a) (POLYNOM8((x),(a)+1)*(x)+(a)[0])
#define POLYNOM10(x, a) (POLYNOM9((x),(a)+1)*(x)+(a)[0])
#define POLYNOM11(x, a) (POLYNOM10((x),(a)+1)*(x)+(a)[0])
#define POLYNOM12(x, a) (POLYNOM11((x),(a)+1)*(x)+(a)[0])
#define POLYNOM13(x, a) (POLYNOM12((x),(a)+1)*(x)+(a)[0])
#define M_LN_MAX_D (M_LN2 * DBL_MAX_EXP)
#define M_LN_MIN_D (M_LN2 * (DBL_MAX_EXP - 1))

View file

@ -0,0 +1,53 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
log(double x)
{
/* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)]
*/
/* Hart & Cheney #2707 */
static double p[5] = {
0.7504094990777122217455611007e+02,
-0.1345669115050430235318253537e+03,
0.7413719213248602512779336470e+02,
-0.1277249755012330819984385000e+02,
0.3327108381087686938144000000e+00
};
static double q[5] = {
0.3752047495388561108727775374e+02,
-0.7979028073715004879439951583e+02,
0.5616126132118257292058560360e+02,
-0.1450868091858082685362325000e+02,
0.1000000000000000000000000000e+01
};
double z, zsqr;
int exponent;
if (x <= 0) {
errno = EDOM;
return 0;
}
x = frexp(x, &exponent);
while (x < M_1_SQRT2) {
x += x;
exponent--;
}
z = (x-1)/(x+1);
zsqr = z*z;
return z * POLYNOM4(zsqr, p) / POLYNOM4(zsqr, q) + exponent * M_LN2;
}

View file

@ -0,0 +1,22 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
log10(double x)
{
if (x <= 0) {
errno = EDOM;
return 0;
}
return log(x) / M_LN10;
}

View file

@ -0,0 +1,24 @@
#
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* $Header$ */
mes 2,EM_WSIZE,EM_PSIZE
#ifndef NOFLOAT
exp $modf
pro $modf,0
lal 0
loi EM_DSIZE
loc 1
loc EM_WSIZE
loc EM_DSIZE
cif
fif EM_DSIZE
lal EM_DSIZE
loi EM_PSIZE
sti EM_DSIZE
ret EM_DSIZE
end
#endif

View file

@ -0,0 +1,35 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
double
pow(double x, double y)
{
double dummy;
if ((x == 0 && y == 0) ||
(x < 0 && modf(y, &dummy) != 0)) {
errno = EDOM;
return 0;
}
if (x == 0) return x;
if (x < 0) {
double val = exp(log(-x) * y);
if (modf(y/2.0, &dummy) != 0) {
/* y was odd */
val = - val;
}
return val;
}
return exp(log(x) * y);
}

View file

@ -0,0 +1,109 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
static double
sinus(double x, int quadrant)
{
/* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] */
/* Hart & Cheney # 3374 */
static double p[6] = {
0.4857791909822798473837058825e+10,
-0.1808816670894030772075877725e+10,
0.1724314784722489597789244188e+09,
-0.6351331748520454245913645971e+07,
0.1002087631419532326179108883e+06,
-0.5830988897678192576148973679e+03
};
static double q[6] = {
0.3092566379840468199410228418e+10,
0.1202384907680254190870913060e+09,
0.2321427631602460953669856368e+07,
0.2848331644063908832127222835e+05,
0.2287602116741682420054505174e+03,
0.1000000000000000000000000000e+01
};
double xsqr;
int t;
if (x < 0) {
quadrant += 2;
x = -x;
}
if (M_PI_2 - x == M_PI_2) {
switch(quadrant) {
case 0:
case 2:
return 0.0;
case 1:
return 1.0;
case 3:
return -1.0;
}
}
if (x >= M_2PI) {
if (x <= 0x7fffffff) {
/* Use extended precision to calculate reduced argument.
Split 2pi in 2 parts a1 and a2, of which the first only
uses some bits of the mantissa, so that n * a1 is
exactly representable, where n is the integer part of
x/pi.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
*/
#define A1 6.2822265625
#define A2 0.00095874467958647692528676655900576
double n = (long) (x / M_2PI);
double x1 = (long) x;
double x2 = x - x1;
x = x1 - n * A1;
x += x2;
x -= n * A2;
#undef A1
#undef A2
}
else {
double dummy;
x = modf(x/M_2PI, &dummy) * M_2PI;
}
}
x /= M_PI_2;
t = x;
x -= t;
quadrant = (quadrant + (int)(t % 4)) % 4;
if (quadrant & 01) {
x = 1 - x;
}
if (quadrant > 1) {
x = -x;
}
xsqr = x * x;
x = x * POLYNOM5(xsqr, p) / POLYNOM5(xsqr, q);
return x;
}
double
sin(double x)
{
return sinus(x, 0);
}
double
cos(double x)
{
if (x < 0) x = -x;
return sinus(x, 1);
}

View file

@ -0,0 +1,38 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
sinh(double x)
{
int negx = x < 0;
if (negx) {
x = -x;
}
if (x > M_LN_MAX_D) {
/* exp(x) would overflow */
if (x >= M_LN_MAX_D + M_LN2) {
/* not representable */
x = HUGE_VAL;
errno = ERANGE;
}
else x = exp (x - M_LN2);
}
else {
double expx = exp(x);
x = 0.5 * (expx - 1.0/expx);
}
if (negx) {
return -x;
}
return x;
}

View file

@ -0,0 +1,36 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#define NITER 5
double
sqrt(double x)
{
int exponent;
double val;
if (x <= 0) {
if (x < 0) errno = EDOM;
return 0;
}
val = frexp(x, &exponent);
if (exponent & 1) {
exponent--;
val *= 2;
}
val = ldexp(val + 1.0, exponent/2 - 1);
/* was: val = (val + 1.0)/2.0; val = ldexp(val, exponent/2); */
for (exponent = NITER - 1; exponent >= 0; exponent--) {
val = (val + x / val) / 2.0;
}
return val;
}

View file

@ -0,0 +1,122 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
tan(double x)
{
/* First reduce range to [0, pi/4].
Then use approximation tan(x*pi/4) = x * P(x*x)/Q(x*x).
Hart & Cheney # 4288
Use: tan(x) = 1/tan(pi/2 - x)
tan(-x) = -tan(x)
tan(x+k*pi) = tan(x)
*/
static double p[5] = {
-0.5712939549476836914932149599e+10,
0.4946855977542506692946040594e+09,
-0.9429037070546336747758930844e+07,
0.5282725819868891894772108334e+05,
-0.6983913274721550913090621370e+02
};
static double q[6] = {
-0.7273940551075393257142652672e+10,
0.2125497341858248436051062591e+10,
-0.8000791217568674135274814656e+08,
0.8232855955751828560307269007e+06,
-0.2396576810261093558391373322e+04,
0.1000000000000000000000000000e+01
};
int negative = x < 0;
double tmp, tmp1, tmp2;
double xsq;
int invert = 0;
int ip;
if (negative) x = -x;
/* first reduce to [0, pi) */
if (x >= M_PI) {
if (x <= 0x7fffffff) {
/* Use extended precision to calculate reduced argument.
Split pi in 2 parts a1 and a2, of which the first only
uses some bits of the mantissa, so that n * a1 is
exactly representable, where n is the integer part of
x/pi.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
We then compute x-n*pi as ((x1 - n*a1) + x2) - n*a2.
*/
#define A1 3.14111328125
#define A2 0.00047937233979323846264338327950288
double n = (long) (x / M_PI);
double x1 = (long) x;
double x2 = x - x1;
x = x1 - n * A1;
x += x2;
x -= n * A2;
#undef A1
#undef A2
}
else {
x = modf(x/M_PI, &tmp) * M_PI;
}
}
/* because the approximation uses x*pi/4, we reverse this */
x /= M_PI_4;
ip = (int) x;
x -= ip;
switch(ip) {
case 0:
/* [0,pi/4] */
break;
case 1:
/* [pi/4, pi/2]
tan(x+pi/4) = 1/tan(pi/2 - (x+pi/4)) = 1/tan(pi/4 - x)
*/
invert = 1;
x = 1.0 - x;
break;
case 2:
/* [pi/2, 3pi/4]
tan(x+pi/2) = tan((x+pi/2)-pi) = -tan(pi/2 - x) =
-1/tan(x)
*/
negative = ! negative;
invert = 1;
break;
case 3:
/* [3pi/4, pi)
tan(x+3pi/4) = tan(x-pi/4) = - tan(pi/4-x)
*/
x = 1.0 - x;
negative = ! negative;
break;
}
xsq = x * x;
tmp1 = x*POLYNOM4(xsq, p);
tmp2 = POLYNOM5(xsq, q);
tmp = tmp1 / tmp2;
if (invert) {
if (tmp == 0.0) {
errno = ERANGE;
tmp = HUGE_VAL;
}
else tmp = tmp2 / tmp1;
}
return negative ? -tmp : tmp;
}

View file

@ -0,0 +1,24 @@
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
tanh(double x)
{
if (x <= 0.5*M_LN_MIN_D) {
return -1;
}
if (x >= 0.5*M_LN_MAX_D) {
return 1;
}
x = exp(x + x);
return (x - 1.0)/(x + 1.0);
}