Initial revision
This commit is contained in:
parent
96d9890d86
commit
df86573d4c
3 changed files with 877 additions and 0 deletions
6
doc/top/Makefile
Normal file
6
doc/top/Makefile
Normal file
|
@ -0,0 +1,6 @@
|
|||
top.f:
|
||||
refer -sA+T -l4,2 -p refs.top top.n | nroff -ms > top.f
|
||||
top.f.35:
|
||||
refer -sA+T -l4,2 -p refs.top top.n | nroff -ms -Thr35 > top.f.35
|
||||
top.f.agfa:
|
||||
refer -sA+T -l4,2 -p refs.top top.n | nroff -ms -Tlp > top.f.agfa
|
79
doc/top/refs.top
Normal file
79
doc/top/refs.top
Normal file
|
@ -0,0 +1,79 @@
|
|||
%T A Practical Toolkit for Making Portable Compilers
|
||||
%A A.S. Tanenbaum
|
||||
%A J.M. van Staveren
|
||||
%A E.G. Keizer
|
||||
%A J.W. Stevenson
|
||||
%I Vrije Universiteit, Amsterdam
|
||||
%R Rapport nr IR-74
|
||||
%D October 1981
|
||||
|
||||
%T A Practical Toolkit for Making Portable Compilers
|
||||
%A A.S. Tanenbaum
|
||||
%A J.M. van Staveren
|
||||
%A E.G. Keizer
|
||||
%A J.W. Stevenson
|
||||
%J CACM
|
||||
%V 26
|
||||
%N 9
|
||||
%P 654-660
|
||||
%D September 1983
|
||||
|
||||
%T A Unix Toolkit for Making Portable Compilers
|
||||
%A A.S. Tanenbaum
|
||||
%A J.M. van Staveren
|
||||
%A E.G. Keizer
|
||||
%A J.W. Stevenson
|
||||
%J Proceedings USENIX conf.
|
||||
%C Toronto, Canada
|
||||
%V 26
|
||||
%D July 1983
|
||||
%P 255-261
|
||||
|
||||
%T Using Peephole Optimization on Intermediate Code
|
||||
%A A.S. Tanenbaum
|
||||
%A J.M. van Staveren
|
||||
%A J.W. Stevenson
|
||||
%J TOPLAS
|
||||
%V 4
|
||||
%N 1
|
||||
%P 21-36
|
||||
%D January 1982
|
||||
|
||||
%T Amsterdam Compiler Kit documentation
|
||||
%A A.S. Tanenbaum
|
||||
%A E.G. Keizer
|
||||
%A J.M. van Staveren
|
||||
%A J.W. Stevenson
|
||||
%I Vrije Universiteit, Amsterdam
|
||||
%R Rapport nr IR-90
|
||||
%D June 1984
|
||||
|
||||
%T Language- and Machine-independant Global Optimization on
|
||||
Intermediate Code
|
||||
%A H.E. Bal
|
||||
%A A.S. Tanenbaum
|
||||
%I Vrije Universiteit, Amsterdam
|
||||
%R Rapport IR-98
|
||||
%D March 1985
|
||||
|
||||
%T The Design and Implementation of the EM Global Optimizer
|
||||
%A H.E. Bal
|
||||
%I Vrije Universiteit, Amsterdam
|
||||
%R Rapport IR-99
|
||||
%D March 1985
|
||||
|
||||
|
||||
%T The C Programming Language
|
||||
%A B.W. Kernighan
|
||||
%A D.M. Ritchie
|
||||
%I Prentice-Hall, Inc
|
||||
%C Englewood Cliffs,NJ
|
||||
%D 1978
|
||||
|
||||
%T Principles of compiler design
|
||||
%A A.V. Aho
|
||||
%A J.D. Ullman
|
||||
%I Addison-Wesley
|
||||
%C Reading, Massachusetts
|
||||
%D 1978
|
||||
|
792
doc/top/top.n
Normal file
792
doc/top/top.n
Normal file
|
@ -0,0 +1,792 @@
|
|||
.ND
|
||||
.pl 11.7i
|
||||
.ll 80m
|
||||
.nr LL 80m
|
||||
.nr tl 78m
|
||||
.tr ~
|
||||
.ds >. .
|
||||
.TL
|
||||
The ACK Target Optimizer
|
||||
.AU
|
||||
H.E. Bal
|
||||
.AI
|
||||
Vrije Universiteit
|
||||
Wiskundig Seminarium, Amsterdam
|
||||
.AB
|
||||
The Target Optimizer is one of several optimizers that are part of
|
||||
the Amsterdam Compiler Kit.
|
||||
It operates directly on assembly code,
|
||||
rather than on a higher level intermediate code,
|
||||
as the Peephole Optimizer and Global Optimizer do.
|
||||
Consequently, the Target Optimizer can do optimizations
|
||||
that are highly machine-dependent.
|
||||
.PP
|
||||
Each target machine has its own Target Optimizer.
|
||||
New optimizers are generated by the Target Optimizer Generator,
|
||||
which uses a machine-dependent table as input.
|
||||
This document contains full information on how to
|
||||
write such a table for a new machine.
|
||||
It also discusses the implementation of the
|
||||
Target Optimizer and its generator.
|
||||
.AE
|
||||
.bp
|
||||
.NH 1
|
||||
Introduction
|
||||
.PP
|
||||
.FS
|
||||
This work was supported by the
|
||||
Stichting Technische Wetenschappen (STW)
|
||||
under grant VWI03.0001.
|
||||
.FE
|
||||
This document describes the target optimizer component
|
||||
of the Amsterdam Compiler Kit (ACK) .
|
||||
.[
|
||||
tanenbaum staveren amsterdam toolkit
|
||||
.]
|
||||
.[
|
||||
tanenbaum staveren cacm
|
||||
.]
|
||||
.[
|
||||
tanenbaum staveren toronto
|
||||
.]
|
||||
Optimization takes place in several parts of ACK compilers,
|
||||
most notably in the Peephole Optimizer
|
||||
.[
|
||||
staveren peephole toplas
|
||||
.]
|
||||
and
|
||||
the Global Optimizer,
|
||||
.[
|
||||
bal tanenbaum global optimization
|
||||
.]
|
||||
.[
|
||||
bal implementation global optimizer
|
||||
.]
|
||||
which are both language- and machine-independent,
|
||||
and in the machine-specific code generators.
|
||||
.[
|
||||
documentation amsterdam compiler kit
|
||||
.]
|
||||
The target optimizer is the finishing touch in this sequence of
|
||||
optimizers.
|
||||
It can be used to capture those optimizations that are hard
|
||||
to express in the other parts of ACK.
|
||||
These optimizations will typically be very machine-specific.
|
||||
.PP
|
||||
The target optimizer operates on the assembly code of some target machine.
|
||||
Hence there is one target optimizer per machine.
|
||||
However, just as for the ACK code generators and assemblers,
|
||||
a framework has been build that allows easy generation of
|
||||
target optimizers out of machine-independent parts and a
|
||||
machine-dependent description table (see figure 1.).
|
||||
So the major part of the code of a target optimizer is
|
||||
shared among all target optimizers.
|
||||
.DS
|
||||
|
||||
|
||||
|-------------------------|
|
||||
| machine-independent |
|
||||
| code |
|
||||
| |
|
||||
|-----------------| |-------------------------|
|
||||
descrip- |target optimizer | | machine-dependent code |
|
||||
tion --> |generator | ----> | + tables |
|
||||
table | | | |
|
||||
|-----------------| |-------------------------|
|
||||
|
||||
target optimizer
|
||||
|
||||
Figure 1: Generation of a target optimizer.
|
||||
|
||||
.DE
|
||||
.PP
|
||||
This document focusses on the description of the machine-dependent table.
|
||||
In chapter 2 we give an informal introduction to the optimization
|
||||
algorithm and to the definition of the table format.
|
||||
Chapters 3 and 4 discuss the implementation of the target optimizer
|
||||
and the target optimizer generator.
|
||||
Appendix A gives full information for writing a description table.
|
||||
.bp
|
||||
.NH 1
|
||||
Global structure of the target optimizer
|
||||
.PP
|
||||
The target optimizer is based on the well understood model
|
||||
of a \fIpeephole optimizer\fR.
|
||||
.[
|
||||
aho ullman compiler
|
||||
.]
|
||||
It contains a machine-dependent table
|
||||
of (pattern,replacement) pairs.
|
||||
Each pattern describes
|
||||
a sequence of one or more assembler instructions
|
||||
that can be replaced by zero or more equivalent, yet cheaper,
|
||||
instructions (the 'replacement').
|
||||
The optimizer maintains a \fIwindow\fR that moves over the input.
|
||||
At any moment, the window contains some contiguous part of the input.
|
||||
If the instructions in the current window match some pattern
|
||||
in the table,
|
||||
they are replaced by the corresponding replacement;
|
||||
else, the window moves one instruction to the right.
|
||||
.PP
|
||||
In the remainder of this section we will give an informal
|
||||
description of the machine-dependent table.
|
||||
A more precise definition is given in appendix A.
|
||||
We will first discuss the restrictions put on the
|
||||
format of the assembly code.
|
||||
.NH 2
|
||||
Assumptions about the assembly code format
|
||||
.PP
|
||||
We assume that a line of assembly code begins with an
|
||||
instruction \fImnemonic\fR (opcode),
|
||||
followed by zero or more \fIoperands\fR.
|
||||
The mnemonic and the first operand must be separated by a special
|
||||
character (e.g. a space or a tab).
|
||||
Likewise, the operands must be separated by a special
|
||||
character (e.g. a comma).
|
||||
These separators need not be the same for all machines.
|
||||
.NH 2
|
||||
Informal description of the machine-dependent tables
|
||||
.PP
|
||||
The major part of the table consists of (pattern,replacement) pairs
|
||||
called \fIentries\fR.
|
||||
.PP
|
||||
A pattern is a list of instruction descriptions.
|
||||
Each instruction description describes the instruction mnemonic and
|
||||
the operands.
|
||||
.PP
|
||||
A mnemonic is described either by a string constant or by the
|
||||
keyword ANY.
|
||||
As all entities dealt with by the target optimizer are strings,
|
||||
string constants do not contain quotes.
|
||||
A string constant matches only itself.
|
||||
ANY matches every instruction mnemonic.
|
||||
.nf
|
||||
|
||||
Examples of mnemonic descriptions:
|
||||
|
||||
add
|
||||
sub.l
|
||||
mulw3
|
||||
ANY
|
||||
.fi
|
||||
.PP
|
||||
An operand can also be described by a string constant.
|
||||
.nf
|
||||
|
||||
Examples:
|
||||
|
||||
(sp)+
|
||||
r5
|
||||
-4(r6)
|
||||
|
||||
.fi
|
||||
Alternatively, it can be described by means of a \fIvariable name\fR.
|
||||
Variables have values which are strings.
|
||||
They have to be declared in the table before the patterns.
|
||||
Each such declaration defines the name of a variable and
|
||||
a \fIrestriction\fR to which its value is subjected.
|
||||
.nf
|
||||
Example of variable declarations:
|
||||
|
||||
CONST { VAL[0] == '$' };
|
||||
REG { VAL[0] == 'r' && VAL[1] >= '0' && VAL[1] <= '3' &&
|
||||
VAL[2] == '\\0' };
|
||||
X { TRUE };
|
||||
|
||||
.fi
|
||||
The keyword VAL denotes the value of the variable, which is
|
||||
a null-terminated string.
|
||||
An operand description given via a variable name matches an
|
||||
actual operand if the actual operand obeys the associated restriction.
|
||||
.nf
|
||||
|
||||
CONST matches $1, $-5, $foo etc.
|
||||
REG matches r0, r1, r2 and r3
|
||||
X matches anything
|
||||
.fi
|
||||
The restriction (between curly braces) may be any legal "C"
|
||||
.[
|
||||
kernighan ritchie c programming
|
||||
.]
|
||||
expression.
|
||||
It may also contain calls to user-defined procedures.
|
||||
These procedures must be added to the table after the patterns.
|
||||
.nf
|
||||
|
||||
Example:
|
||||
|
||||
FERMAT_NUMBER { VAL[0] == '$' && is_fermat_number(&VAL[1]) };
|
||||
|
||||
.fi
|
||||
An operand can also be described by a mixture of a string constant
|
||||
and a variable name.
|
||||
The most general form allowed is:
|
||||
.nf
|
||||
|
||||
string_constant1 variable_name string_constant2
|
||||
|
||||
Example:
|
||||
|
||||
(REG)+ matches (r0)+, (r1)+, (r2)+ and (r3)+
|
||||
|
||||
.fi
|
||||
Any of the three components may be omitted,
|
||||
so the first two forms are just special cases of the general form.
|
||||
The name of a variable can not be used as a string constant.
|
||||
In the above context, it is impossible to define an operand that
|
||||
matches the string "REG".
|
||||
This limitation is of little consequence,
|
||||
as the table writer is free to choose the names of variables.
|
||||
This approach, however, avoids the need for awkward escape sequences.
|
||||
.PP
|
||||
A pattern consists of one or more instruction descriptions
|
||||
(separated by a colon)
|
||||
followed by an optional constraint.
|
||||
A pattern "P1 : P2 : .. : Pn C" matches the sequence of
|
||||
instructions "I1 I2 .. In" if:
|
||||
.IP (i) 7
|
||||
for each i, 1 <= i <= n, Pi matches Ii, as described above;
|
||||
.IP (ii)
|
||||
multiple occurrences of the same variable name or of
|
||||
the keyword ANY stand for the same values throughout the pattern;
|
||||
.IP (iii)
|
||||
the optional constraint C is satisfied, i.e. it evaluates to TRUE.
|
||||
.LP
|
||||
.nf
|
||||
The pattern:
|
||||
|
||||
dec REG : move.b CONST,(REG)
|
||||
|
||||
matches:
|
||||
|
||||
dec r0 : move.b $4,(r0)
|
||||
|
||||
but not:
|
||||
|
||||
dec r0 : move.b $4,(r1)
|
||||
|
||||
(as the variable REG matches two different strings).
|
||||
.fi
|
||||
If a pattern containing different registers must be described,
|
||||
extra names for a register should be declared, all sharing
|
||||
the same restriction.
|
||||
.nf
|
||||
Example:
|
||||
|
||||
REG1,REG2 { VAL[0] == 'r' && ..... };
|
||||
|
||||
addl3 REG1,REG1,REG2 : subl2 REG2,REG1
|
||||
.fi
|
||||
.PP
|
||||
The optional constraint is an auxiliary "C" expression (just like
|
||||
the parameter restrictions).
|
||||
The expression may refer to the variables and to ANY.
|
||||
.nf
|
||||
Example:
|
||||
|
||||
move REG1,REG2 { REG1[1] == REG2[1] + 1 }
|
||||
|
||||
matches
|
||||
|
||||
move r1,r0
|
||||
move r2,r1
|
||||
move r3,r2
|
||||
.fi
|
||||
.PP
|
||||
The replacement part of a (pattern,replacement) table entry
|
||||
has the same structure as a pattern, except that:
|
||||
.IP (i)
|
||||
it may not contain an additional constraint;
|
||||
.IP (ii)
|
||||
it may be empty.
|
||||
.LP
|
||||
A replacement may also refer to the values of variables and ANY.
|
||||
.NH 2
|
||||
Examples
|
||||
.PP
|
||||
This section contains some realistic examples for
|
||||
optimization on PDP-11 and Vax assembly code.
|
||||
.NH 3
|
||||
Vax examples
|
||||
.PP
|
||||
Suppose the table contains the following declarations:
|
||||
.nf
|
||||
X, LOG { TRUE };
|
||||
LAB { VAL[0] == 'L' }; /* e.g. L0017 */
|
||||
A { no_side_effects(VAL) };
|
||||
NUM { is_number(VAL) };
|
||||
|
||||
.fi
|
||||
The procedure "no_side_effects" checks if its argument
|
||||
contains any side effects, i.e. auto increment or auto decrement.
|
||||
The procedure "is_number" checks if its argument contains only digits.
|
||||
These procedures must be supplied by the table-writer and must be
|
||||
included in the table.
|
||||
.PP
|
||||
.nf
|
||||
\fIentry:\fR addl3 X,A,A -> addl2 X,A;
|
||||
|
||||
.fi
|
||||
This entry changes a 3-operand instruction into a cheaper 2-operand
|
||||
instruction.
|
||||
An optimization like:
|
||||
.nf
|
||||
|
||||
addl3 r0,(r2)+,(r2)+ -> addl2 r0,(r2)+
|
||||
|
||||
.fi
|
||||
is illegal, as r2 should be incremented twice.
|
||||
Hence the second argument is required to
|
||||
be side-effect free.
|
||||
.PP
|
||||
.nf
|
||||
\fIentry:\fR addw2 $-NUM,X -> subw2 $NUM,X;
|
||||
|
||||
.fi
|
||||
An instruction like "subw2 $5,r0" is cheaper
|
||||
than "addw2 $-5,r0",
|
||||
because constants in the range 0 to 63 are represented
|
||||
very efficiently on the Vax.
|
||||
.PP
|
||||
.nf
|
||||
\fIentry:\fR bitw $NUM,A : jneq LAB
|
||||
{ is_poweroftwo(NUM,LOG) } -> jbs $LOG,A,LAB;
|
||||
|
||||
.fi
|
||||
A "bitw x,y" sets the condition codes to the bitwise "and" of
|
||||
x and y.
|
||||
A "jbs n,x,l" branches to l if bit n of x is set.
|
||||
So, for example, the following transformation is possible:
|
||||
.nf
|
||||
|
||||
bitw $32,r0 : jneq L0017 -> jbs $5,r0,L0017
|
||||
|
||||
.fi
|
||||
The user-defined procedure "is_poweroftwo" checks if its first argument is
|
||||
a power of 2 and, if so, sets its second argument to the logarithm
|
||||
of the first argument. (Both arguments are strings).
|
||||
Note that the variable LOG is not used in the pattern itself.
|
||||
It is assigned a (string) value by "is_poweroftwo" and is used
|
||||
in the replacement.
|
||||
.NH 3
|
||||
PDP-11 examples
|
||||
.PP
|
||||
Suppose we have the following declarations:
|
||||
.nf
|
||||
X { TRUE };
|
||||
A { no_side_effects(VAL) };
|
||||
L1, L2 { VAL[0] == 'I' };
|
||||
REG { VAL[0] == 'r' && VAL[1] >= '0' && VAL[1] <= '5' &&
|
||||
VAL[2] == '\\0' };
|
||||
|
||||
.fi
|
||||
The implementation of "no_side_effects" may of course
|
||||
differ for the PDP-11 and the Vax.
|
||||
.PP
|
||||
.nf
|
||||
\fIentry:\fR mov REG,A : ANY A,X -> mov REG,A : ANY REG,X ;
|
||||
|
||||
.fi
|
||||
This entry implements register subsumption.
|
||||
If A and REG hold the same value (which is true after "mov REG,A")
|
||||
and A is used as source (first) operand, it is cheaper to use REG instead.
|
||||
.PP
|
||||
.nf
|
||||
\fIentry:\fR jeq L1 : jbr L2 : labdef L1 -> jne L2 : labdef L1;
|
||||
|
||||
.fi
|
||||
The "jeq L1" is a "skip over an unconditional jump". "labdef L1"
|
||||
denotes the definition (i.e. defining occurrence) of label L1.
|
||||
As the target optimizer has to know how such a definition
|
||||
looks like, this must be expressed in the table (see Appendix A).
|
||||
.PP
|
||||
.nf
|
||||
\fIentry:\fR add $01,X { carry_dead(REST) } -> inc X;
|
||||
|
||||
.fi
|
||||
On the PDP-11, an add-one is not equivalent to an increment.
|
||||
The latter does not set the carry-bit of the condition codes,
|
||||
while the former does.
|
||||
So a look-ahead is needed to see if the rest of the input uses
|
||||
the carry-bit before changing the condition codes.
|
||||
A look-ahead of one instruction is provided by
|
||||
the target optimizer.
|
||||
This will normally be sufficient for compiler-generated code.
|
||||
The keyword REST contains the mnemonic of the first instruction of
|
||||
the rest of the input.
|
||||
If this instruction uses the carry-bit (e.g. an adc, subc, bhis)
|
||||
the transformation is not allowed.
|
||||
.bp
|
||||
.NH 1
|
||||
Implementation of the target optimizer
|
||||
.PP
|
||||
The target optimizer reads one input file of assembler instructions,
|
||||
processes it, and writes the optimized code
|
||||
to the output file.
|
||||
So it performs one pass over the input.
|
||||
.NH 2
|
||||
The window mechanism
|
||||
.PP
|
||||
The optimizer uses a \fIwindow\fR that moves over the input.
|
||||
It repeatedly tries to match the instructions in the window
|
||||
with the patterns in the table.
|
||||
If no match is possible, the window moves
|
||||
one instruction forwards (to the right).
|
||||
After a successful match the matched instructions are
|
||||
removed from the window and are replaced by the
|
||||
replacement part of the table entry.
|
||||
Furthermore, the window is moved a few instructions
|
||||
backwards,
|
||||
as it is possible that instructions that were rejected earlier now do match.
|
||||
For example, consider the following patterns:
|
||||
.DS
|
||||
cmp $0, X -> tst X ;
|
||||
mov REG,X : tst X -> move REG.X ; /* redundant test */
|
||||
.DE
|
||||
If the input is:
|
||||
.DS
|
||||
mov r0,foo : cmp $0,foo
|
||||
.DE
|
||||
then the first instruction is initially rejected.
|
||||
However, after the transformation
|
||||
.DS
|
||||
cmp $0,foo -> tst foo
|
||||
.DE
|
||||
the following optimization is possible:
|
||||
.DS
|
||||
mov r0,foo : tst foo -> mov r0,foo
|
||||
.DE
|
||||
.PP
|
||||
The window is implemented a a \fIqueue\fR.
|
||||
Matching takes place at the head of the queue.
|
||||
New instructions are added at the tail.
|
||||
If the window is moved forwards, the instruction at the head
|
||||
is not yet written to the output,
|
||||
as it may be needed later on.
|
||||
Instead it is added to a second queue,
|
||||
the \fIbackup queue\fR.
|
||||
After a successful match, the entire backup queue is
|
||||
inserted at the front of the window queue,
|
||||
which effectively implements the shift backwards.
|
||||
.PP
|
||||
Both queues have the length of the longest pattern in the table.
|
||||
If, as a result of a forward window move,
|
||||
the backup queue gets full,
|
||||
the instruction at its head is outputted and removed.
|
||||
Instructions are read from the input whenever the
|
||||
window queue contains fewer elements than the length
|
||||
of the longest pattern.
|
||||
.NH 2
|
||||
Pattern matching
|
||||
.PP
|
||||
Pattern matching is done in three steps:
|
||||
.IP (i) 7
|
||||
find patterns in the table whose instruction mnemonics
|
||||
match the mnemonics of the instructions in the
|
||||
current window;
|
||||
.IP (ii)
|
||||
check if the operands of the pattern match the operands of the
|
||||
instructions in the current window;
|
||||
.IP (iii)
|
||||
check if the optional constraint is satisfied.
|
||||
.LP
|
||||
For step (i) hashing is used.
|
||||
The mnemonic of the first instruction of the window
|
||||
is used to determine a list of possible patterns.
|
||||
Patterns starting with ANY are always tried.
|
||||
.PP
|
||||
Matching of operand descriptions against actual operands
|
||||
takes place as follows.
|
||||
The general form of an operand description is:
|
||||
.DS
|
||||
string_constant1 variable_name string_constant2
|
||||
.DE
|
||||
The actual operand should begin with string_constant1 and end
|
||||
on string_constant2.
|
||||
If so, these strings are stripped from it and the remaining string is
|
||||
matched against the variable.
|
||||
Matching a string against a variable is
|
||||
defined as follows:
|
||||
.IP 1.
|
||||
initially (before the entire pattern match)
|
||||
all variables are uninstantiated;
|
||||
.IP 2.
|
||||
matching a string against an uninstantiated variable
|
||||
succeeds if the restriction associated with the variable is
|
||||
satisfied.
|
||||
As a side effect, it causes the variable to be instantiated to
|
||||
the string;
|
||||
.IP 3.
|
||||
matching a string against an instantiated variable succeeds
|
||||
only if the variable was instantiated to the same string.
|
||||
.LP
|
||||
Matching an actual mnemonic against the keyword ANY is defined likewise.
|
||||
.PP
|
||||
The matching scheme implements the requirement that multiple occurrences
|
||||
of the same variable name or of the keyword ANY should
|
||||
stand for the same values throughout the entire pattern
|
||||
(see section 2.).
|
||||
.PP
|
||||
Both the parameter restriction of 2. and the constraint of step (iii)
|
||||
are checked by executing the "C" expression.
|
||||
.NH 2
|
||||
Data structures
|
||||
.PP
|
||||
The most important data structure is the representation
|
||||
of the input instructions.
|
||||
For every instruction we use two representations:
|
||||
.IP (i)
|
||||
the textual representation,
|
||||
i.e. the exact code as it appeared in the input;
|
||||
.IP (ii)
|
||||
a structural representation,
|
||||
containing the opcode and the operands.
|
||||
.LP
|
||||
The opcode of an instruction is determined as soon as it is read.
|
||||
If the line contains a label definition, the opcode is set
|
||||
to "labdef", so a label definition is treated like a normal
|
||||
instruction.
|
||||
.PP
|
||||
The operands of an instruction are not determined until
|
||||
they are needed, i.e. until step (i) of the pattern matching
|
||||
process has succeeded.
|
||||
For every instruction we keep track of a \fIstate\fR.
|
||||
After the opcode has successfully been determined,
|
||||
the state is OPC_ONLY.
|
||||
Once the operands have been recognized, the state is set to DONE.
|
||||
If the opcode or operands can not be determined,
|
||||
or if the instruction cannot be optimized for any other
|
||||
reason (see Appendix A), the state is set to JUNK
|
||||
and any attempt to match it will fail.
|
||||
.PP
|
||||
For each table entry we record the following information:
|
||||
.IP (i) 7
|
||||
the length of the pattern (i.e. the number of instruction descriptions)
|
||||
.IP (ii)
|
||||
a description of the instructions of the pattern
|
||||
.IP (iii)
|
||||
the length of the replacement
|
||||
.IP (iv)
|
||||
a description of the instructions of the replacement.
|
||||
.LP
|
||||
The description of an instruction consists of:
|
||||
.IP (i)
|
||||
the opcode
|
||||
.IP (ii)
|
||||
for each operand, a description of the operand.
|
||||
.LP
|
||||
The description of an operand of the form:
|
||||
.DS
|
||||
string_constant1 variable_name string_constant2
|
||||
.DE
|
||||
contains:
|
||||
.IP (i)
|
||||
both string constants
|
||||
.IP (ii)
|
||||
the number of the variable.
|
||||
.LP
|
||||
Each declared variable is assigned a unique number.
|
||||
For every variable we maintain:
|
||||
.IP (i)
|
||||
its state (instantiated or not instantiated)
|
||||
.IP (ii)
|
||||
its current value (a string).
|
||||
.LP
|
||||
The restrictions on variables and the constraints are stored
|
||||
in a switch-statement,
|
||||
indexed by variable number and entry number respectively.
|
||||
.bp
|
||||
.NH 1
|
||||
Implementation of the target optimizer generator
|
||||
.PP
|
||||
The target optimizer generator (\fItopgen\fR)
|
||||
reads a target machine description table and produces
|
||||
two files:
|
||||
.IP gen.h: 9
|
||||
contains macro definitions for
|
||||
machine parameters that were changed
|
||||
in the parameter section of the table (see appendix A)
|
||||
and for some attributes derived from the table
|
||||
(longest pattern, number of patterns, number
|
||||
of variables).
|
||||
.IP gen.c:
|
||||
contains the entry description tables,
|
||||
code for checking the parameter restrictions and constraints
|
||||
(switch statements)
|
||||
and the user-defined procedures.
|
||||
.LP
|
||||
These two files are compiled together with some machine-independent
|
||||
files to produce a target optimizer.
|
||||
.PP
|
||||
Topgen is implemented using
|
||||
the LL(1) parser generator system LLgen,
|
||||
a powerful tool of the Amsterdam Compiler Kit.
|
||||
This system provides a flexible way of describing the syntax of the tables.
|
||||
The syntactical description of the table format included
|
||||
in Appendix A was derived from the LLgen syntax rules.
|
||||
.PP
|
||||
The parser uses a simple, hand-written, lexical analyzer (scanner).
|
||||
The scanner returns a single character in most cases.
|
||||
The recognition of identifiers is left to the parser, as
|
||||
this eases the analysis of operand descriptions.
|
||||
Comments are removed from the input by the scanner,
|
||||
but white space is passed to the parser,
|
||||
as it is meaningful in some contexts (it separates the
|
||||
opcode description from the description of the first operand).
|
||||
.PP
|
||||
Topgen maintains two symbol tables, one for variable names and one
|
||||
for tunable parameters.
|
||||
The symbol tables are organized as binary trees.
|
||||
.bp
|
||||
.SH
|
||||
Appendix A
|
||||
.PP
|
||||
In this appendix we present a complete definition of the target
|
||||
optimizer description table format.
|
||||
This appendix is intended for table-writers.
|
||||
We use syntax rules for the description of the table format.
|
||||
The following notation is used:
|
||||
.nf
|
||||
{ a } zero or more of a
|
||||
[ a ] zero or one of a
|
||||
a b a followed by b
|
||||
a | b a or b
|
||||
|
||||
.fi
|
||||
Terminals are given in quotes, as in ';'.
|
||||
.PP
|
||||
The table may contain white space and comment at all reasonable places.
|
||||
Comments are as in "C", so they begin with /* and end on */.
|
||||
Identifiers are sequences of letters, digits and the underscore ('_'),
|
||||
beginning with a letter.
|
||||
.PP
|
||||
.DS
|
||||
table -> {parameter_line} '%%;' {variable_declaration} '%%;'
|
||||
{entry} '%%;' user_routines.
|
||||
|
||||
.DE
|
||||
A table consists of four sections, containing machine-dependent
|
||||
constants, variable declarations, pattern rules and
|
||||
user-supplied subroutines.
|
||||
.PP
|
||||
.DS
|
||||
parameter_line -> identifier value ';' .
|
||||
|
||||
.DE
|
||||
A parameter line defines some attributes of the target machines
|
||||
assembly code.
|
||||
For unspecified parameters default values apply.
|
||||
The names of the parameters and the corresponding defaults
|
||||
are shown in table 1.
|
||||
.DS
|
||||
OPC_TERMINATOR ' '
|
||||
OP_SEPARATOR ','
|
||||
LABEL_STARTER 'I'
|
||||
LABEL_TERMINATOR ':'
|
||||
MAXOP 2
|
||||
MAXOPLEN 25
|
||||
MAX_OPC_LEN 10
|
||||
MAXVARLEN 25
|
||||
MAXLINELEN 100
|
||||
|
||||
table 1: parameter names and defaults
|
||||
.DE
|
||||
The OPC_TERMINATOR is the character that separates the instruction
|
||||
mnemonic from the first operand (if any).
|
||||
The OP_SEPARATOR separates adjacent operands.
|
||||
A LABEL_STARTER is the first character of an instruction label.
|
||||
(Instruction labels are assumed to start with the same character).
|
||||
The LABEL_TERMINATOR is the last character of a label definition.
|
||||
It is assumed that this character is not used in an applied
|
||||
occurrence of the label identifier.
|
||||
For example, the defining occurrence may be "I0017:"
|
||||
and the applied occurrence may be "I0017"
|
||||
as in "jmp I0017".
|
||||
MAXOP defines the maximum number of operands an instruction can have.
|
||||
MAXOPLEN is the maximum length (in characters) of an operand.
|
||||
MAX_OPC_LEN is the maximum length of an instruction opcode.
|
||||
MAXVARLEN is the maximum length of a declared string variable.
|
||||
As variables may be set by user routines (see "bitw" example for
|
||||
the Vax) the table-writer must have access to this length and
|
||||
must be able to change it.
|
||||
MAXLINELEN denotes the maximum length of a line of assembly code.
|
||||
.PP
|
||||
If a line of assembly code violates any of the assumptions or
|
||||
exceeds some limit,
|
||||
the line is not optimized.
|
||||
Optimization does, however, proceed with the rest of the input.
|
||||
.PP
|
||||
.DS
|
||||
variable_declaration -> identifier {',' identifier} restriction ';' .
|
||||
|
||||
restriction -> '{' anything '}' .
|
||||
.DE
|
||||
A variable declaration declares one or more string variables
|
||||
that may be used in the patterns and in the replacements.
|
||||
If a variable is used as part of an operand description in
|
||||
a pattern, the entire pattern can only match if the
|
||||
restriction evaluates to TRUE.
|
||||
If the pattern does match, the variable is assigned the matching
|
||||
part of the actual operand.
|
||||
Variables that are not used in a pattern are initialized to
|
||||
null-strings and may be assigned a value in the constraint-part of
|
||||
the pattern.
|
||||
.PP
|
||||
The restriction must be a legal "C" expression.
|
||||
It may not contain a closing bracket ('}').
|
||||
Inside the expression, the name VAL stands for the part of the actual
|
||||
(matching) operand.
|
||||
The expression may contain calls to procedures that are defined in the
|
||||
user-routines section.
|
||||
.DS
|
||||
entry -> pattern '->' replacement ';' .
|
||||
|
||||
pattern -> instruction_descr
|
||||
{ ':' instruction_descr }
|
||||
constraint .
|
||||
|
||||
replacement -> [ instruction_descr { ':' instruction_descr } ] .
|
||||
|
||||
instruction_descr -> opcode
|
||||
white
|
||||
[ operand_descr { ',' operand_descr } ] .
|
||||
|
||||
constraint -> '{' anything '}' .
|
||||
|
||||
operand_descr -> [ string_constant ]
|
||||
[ variable_name ]
|
||||
[ string_constant ] .
|
||||
|
||||
variable_name -> identifier .
|
||||
|
||||
opcode -> anything .
|
||||
.DE
|
||||
The symbol 'white' stands for white space (space or tab).
|
||||
An opcode can be any string not containing the special
|
||||
symbols ';', '{', '}', ':', ',', '->' or white space.
|
||||
To be recognized, it must begin with a letter.
|
||||
The opcode should either be a mnemonic of a target machine
|
||||
instruction or it should be one of the keywords ANY and labdef.
|
||||
ANY matches any actual opcode. labdef matches only label definitions.
|
||||
.PP
|
||||
If an operand description contains an identifier (as defined earlier),
|
||||
it is checked if the identifier is the name of a declared variable.
|
||||
This effects the semantics of the matching rules for the operand,
|
||||
as described in section 2.
|
||||
An operand may contain at most one such variable name.
|
||||
.PP
|
||||
The constraint must be a legal "C" expression, just as the operand restriction.
|
||||
It may call user-defined procedures and use or change the value of
|
||||
declared variables.
|
||||
It may also use the string variable REST,
|
||||
which contains the mnemonic of the first instruction of the
|
||||
rest of the input. (REST is a null-string if this mnemonic can
|
||||
not be determined).
|
||||
.DS
|
||||
user_routines -> anything .
|
||||
.DE
|
||||
The remainder of the table consists of user-defined subroutines.
|
||||
.bp
|
||||
.[
|
||||
$LIST$
|
||||
.]
|
Loading…
Reference in a new issue