/* * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* $Id$ */ #define __NO_DEFS #include #include "pc.h" #if __STDC__ #include #define M_MIN_D DBL_MIN #define M_MAX_D DBL_MAX #define M_DMINEXP DBL_MIN_EXP #endif #undef HUGE #define HUGE 1e1000 static double Ldexp(double fl, int exp) { int sign = 1; int currexp; if (fl < 0) { fl = -fl; sign = -1; } fl = _fef(fl, &currexp); exp += currexp; if (exp > 0) { while (exp > 30) { fl *= (double)(1L << 30); exp -= 30; } fl *= (double)(1L << exp); } else { while (exp < -30) { fl /= (double)(1L << 30); exp += 30; } fl /= (double)(1L << -exp); } return sign * fl; } double _exp(double x) { /* Algorithm and coefficients from: "Software manual for the elementary functions" by W.J. Cody and W. Waite, Prentice-Hall, 1980 */ static double p[] = { 0.25000000000000000000e+0, 0.75753180159422776666e-2, 0.31555192765684646356e-4 }; static double q[] = { 0.50000000000000000000e+0, 0.56817302698551221787e-1, 0.63121894374398503557e-3, 0.75104028399870046114e-6 }; double xn, g; int n; int negative = x < 0; if (x <= M_LN_MIN_D) { g = M_MIN_D / 4.0; if (g != 0.0) { /* unnormalized numbers apparently exist */ if (x < (M_LN2 * (M_DMINEXP - 53))) return 0.0; } else { if (x < M_LN_MIN_D) return 0.0; return M_MIN_D; } } if (x >= M_LN_MAX_D) { if (x > M_LN_MAX_D) { _trp(EEXP); return HUGE; } return M_MAX_D; } if (negative) x = -x; n = x * M_LOG2E + 0.5; /* 1/ln(2) = log2(e), 0.5 added for rounding */ xn = n; { double x1 = (long)x; double x2 = x - x1; g = ((x1 - xn * 0.693359375) + x2) - xn * (-2.1219444005469058277e-4); } if (negative) { g = -g; n = -n; } xn = g * g; x = g * POLYNOM2(xn, p); n += 1; return (Ldexp(0.5 + x / (POLYNOM3(xn, q) - x), n)); }