/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". */ /* $Header$ */ /* C O D E - G E N E R A T I N G R O U T I N E S */ #include "lint.h" #include "debug.h" #include "dbsymtab.h" #include #include "botch_free.h" #include #include "dataflow.h" #include "use_tmp.h" #include #include "arith.h" #include "type.h" #include "idf.h" #include "label.h" #include "code.h" #include "stmt.h" #include "def.h" #include "expr.h" #include "sizes.h" #include "stack.h" #include "level.h" #include "decspecs.h" #include "declar.h" #include "Lpars.h" #include "specials.h" #include "atw.h" #include "assert.h" #include "file_info.h" #ifdef LINT #include "l_lint.h" #endif LINT #ifdef DBSYMTAB #include #endif /* DBSYMTAB */ label lab_count = 1; label datlab_count = 1; int fp_used; extern arith NewLocal(); /* util.c */ /* global function info */ char *func_name; struct type *func_type; int func_notypegiven; #ifdef USE_TMP static int tmp_id; static int pro_id; #endif USE_TMP extern char options[]; extern char *symbol2str(); extern char *source; #ifndef LINT init_code(dst_file) char *dst_file; { /* init_code() initialises the output file on which the compact EM code is written */ C_init(word_size, pointer_size); /* initialise EM module */ if (C_open(dst_file) == 0) fatal("cannot write to %s\n", dst_file); C_magic(); C_ms_emx(word_size, pointer_size); #ifdef DBSYMTAB if (options['g']) { C_ms_std(source, N_SO, 0); stb_typedef(int_type, "int"); stb_typedef(schar_type, "char"); stb_typedef(long_type, "long"); stb_typedef(short_type, "short"); stb_typedef(uchar_type, "unsigned char"); stb_typedef(ushort_type, "unsigned short"); stb_typedef(ulong_type, "unsigned long"); stb_typedef(uint_type, "unsigned int"); stb_typedef(float_type, "float"); stb_typedef(double_type, "double"); stb_typedef(lngdbl_type, "long double"); stb_typedef(void_type, "void"); } #endif /* DBSYMTAB */ #ifdef USE_TMP #ifdef PREPEND_SCOPES C_insertpart(tmp_id = C_getid()); #endif PREPEND_SCOPES #endif USE_TMP } #endif LINT struct string_cst *str_list = 0; code_string(val, len, dlb) char *val; int len; label dlb; { register struct string_cst *sc = new_string_cst(); C_ina_dlb(dlb); sc->next = str_list; str_list = sc; sc->sc_value = val; sc->sc_len = len; sc->sc_dlb = dlb; } def_strings(sc) register struct string_cst *sc; { while (sc) { struct string_cst *sc1 = sc; C_df_dlb(sc->sc_dlb); str_cst(sc->sc_value, sc->sc_len, 1); /* string in rom */ sc = sc->next; free(sc1->sc_value); free_string_cst(sc1); } } /* flush_strings() is called from program.g after each external definition */ flush_strings() { if (str_list) { def_strings(str_list); str_list = 0; } } end_code() { /* end_code() performs the actions to be taken when closing the output stream. */ if (fp_used) { /* floating point used */ C_ms_flt(); } C_ms_src((int)(LineNumber - 2), FileName); C_close(); } #ifdef PREPEND_SCOPES prepend_scopes() { /* prepend_scopes() runs down the list of global idf's and generates those exa's, exp's, ina's and inp's that superior hindsight has provided. */ register struct stack_entry *se = local_level->sl_entry; #ifdef USE_TMP C_beginpart(tmp_id); #endif USE_TMP while (se != 0) { register struct def *df = se->se_idf->id_def; if (df && (df->df_initialized || df->df_used || df->df_alloc)) { code_scope(se->se_idf->id_text, df); } se = se->next; } #ifdef USE_TMP C_endpart(tmp_id); #endif USE_TMP } #endif PREPEND_SCOPES code_scope(text, def) char *text; register struct def *def; { /* generates code for one name, text, of the storage class as given by def, if meaningful. */ int fund = def->df_type->tp_fund; switch (def->df_sc) { case EXTERN: case GLOBAL: case IMPLICIT: if (fund == FUNCTION) C_exp(text); else C_exa_dnam(text); break; case STATIC: if (fund == FUNCTION) C_inp(text); else C_ina_dnam(text); break; } } static label return_label, return2_label; static char return_expr_occurred; static arith func_size; static label func_res_label; static char *last_fn_given = (char *)0; static label file_name_label; begin_proc(ds, idf) /* to be called when entering a procedure */ struct decspecs *ds; struct idf *idf; { /* begin_proc() is called at the entrance of a new function and performs the necessary code generation: - a scope indicator (if needed) exp/inp - the procedure entry pro $name - reserves some space if the result of the function does not fit in the return area - a fil pseudo instruction */ register char *name = idf->id_text; register struct def *def = idf->id_def; /* idf->id_def does not indicate the right def structure * when the function being defined has a parameter of the * same name in an old-style function definition. */ while (def->df_level != L_GLOBAL) def = def->next; /* When we have a new-style function definition, the parameters * are defined first, which means that it may look as if they have * the greatest scope. Correct this. */ if (idf->id_def == def && def->next && def->next->df_level == L_PROTO) { struct def *tmpdef = def->next; def->next = tmpdef->next; tmpdef->next = def; idf->id_def = tmpdef; } #ifndef PREPEND_SCOPES code_scope(name, def); #endif PREPEND_SCOPES #ifdef DATAFLOW if (options['d']) DfaStartFunction(name); #endif DATAFLOW /* set global function info */ func_name = name; if (def->df_type->tp_fund != FUNCTION) { error("making function body for non-function"); func_type = error_type; } else { func_type = def->df_type->tp_up; } func_notypegiven = ds->ds_notypegiven; func_size = ATW(func_type->tp_size); #ifndef USE_TMP C_pro_narg(name); #else C_insertpart(pro_id = C_getid()); #endif if (is_struct_or_union(func_type->tp_fund)) { C_df_dlb(func_res_label = data_label()); C_bss_cst(func_size, (arith)0, 1); } else func_res_label = 0; /* Special arrangements if the function result doesn't fit in the function return area of the EM machine. The size of the function return area is implementation dependent. */ lab_count = (label) 1; return_label = text_label(); return2_label = text_label(); return_expr_occurred = 0; LocalInit(); prc_entry(name); if (! options['L']) { /* profiling */ if (!last_fn_given || strcmp(last_fn_given, FileName) != 0) { /* previous function came from other file */ C_df_dlb(file_name_label = data_label()); C_con_scon(last_fn_given = FileName, (arith)(strlen(FileName) + 1)); } /* enable debug trace of EM source */ C_fil_dlb(file_name_label, (arith)0); C_lin((arith)LineNumber); } #ifdef DBSYMTAB if (options['g']) { stb_string(def, FUNCTION, name); if (! strcmp(name, "main")) { C_ms_stb_cst(name, N_MAIN, 0, (arith) 0); } } #endif } end_proc(fbytes) arith fbytes; { /* end_proc() deals with the code to be generated at the end of a function, as there is: - the EM ret instruction: "ret 0" - loading of the function result in the function result area if there has been a return in the function body (see do_return_expr()) - indication of the use of floating points - indication of the number of bytes used for formal parameters - use of special identifiers such as "__setjmp" - "end" + number of bytes used for local variables */ arith nbytes; char optionsn = options['n']; #ifdef DATAFLOW if (options['d']) DfaEndFunction(); #endif DATAFLOW C_df_ilb(return2_label); if (return_expr_occurred && func_res_label == 0) { C_asp(-func_size); } C_df_ilb(return_label); prc_exit(); #ifndef LINT if (return_expr_occurred) { if (func_res_label != 0) { C_lae_dlb(func_res_label, (arith)0); C_ret(pointer_size); } else C_ret(func_size); } else C_ret((arith) 0); #endif LINT /* getting the number of "local" bytes is posponed until here, because copying the function result in "func_res_label" may need temporaries! However, local_level is now L_FORMAL2, because L_LOCAL is already unstacked. Therefore, "unstack_level" must also pass "sl_max_block" to the level above L_LOCAL. */ nbytes = ATW(- local_level->sl_max_block); #ifdef USE_TMP C_beginpart(pro_id); C_pro(func_name, nbytes); #endif if (fbytes > max_int) { error("%s has more than %ld parameter bytes", func_name, (long) max_int); } C_ms_par(fbytes); /* # bytes for formals */ if (sp_occurred[SP_SETJMP]) { /* indicate use of "__setjmp" */ options['n'] = 1; C_ms_gto(); sp_occurred[SP_SETJMP] = 0; } #ifdef USE_TMP C_endpart(pro_id); #endif LocalFinish(); C_end(nbytes); if (nbytes > max_int) { error("%s has more than %ld bytes of local variables", func_name, (long) max_int); } options['n'] = optionsn; } do_return() { /* do_return handles the case of a return without expression. This version branches to the return label, which is probably smarter than generating a direct return. Return sequences may be expensive. */ C_bra(return2_label); } do_return_expr(expr) struct expr *expr; { /* do_return_expr() generates the expression and the jump for a return statement with an expression. */ ch3cast(&expr, RETURN, func_type); code_expr(expr, RVAL, TRUE, NO_LABEL, NO_LABEL); if (func_res_label != 0) { C_lae_dlb(func_res_label, (arith)0); store_block(func_size, func_type->tp_align); } C_bra(return_label); return_expr_occurred = 1; } code_declaration(idf, expr, lvl, sc) register struct idf *idf; /* idf to be declared */ struct expr *expr; /* initialisation; NULL if absent */ int lvl; /* declaration level */ int sc; /* storage class, as in the declaration */ { /* code_declaration() does the actual declaration of the variable indicated by "idf" on declaration level "lvl". If the variable is initialised, the expression is given in "expr", but for global and static initialisations it is just non-zero, as the expression is not parsed yet. There are some cases to be considered: - filter out typedefs, they don't correspond to code; - global variables, coded only if initialized; - local static variables; - local automatic variables; Since the expression may be modified in the process, code_declaration() frees it after use, as the caller can no longer do so. If there is a storage class indication (EXTERN/STATIC), code_declaration() will generate an exa or ina. The sc is the actual storage class, as given in the declaration. */ register struct def *def = idf->id_def; register arith size = def->df_type->tp_size; int fund = def->df_type->tp_fund; int def_sc = def->df_sc; if (def_sc == TYPEDEF) { /* no code for typedefs */ #ifdef DBSYMTAB if (options['g']) { stb_typedef(def->df_type, idf->id_text); } #endif /* DBSYMTAB */ return; } if (lvl == L_GLOBAL) { /* global variable */ /* is this an allocating declaration? */ if ( (sc == 0 || sc == STATIC) && fund != FUNCTION && size >= 0 ) def->df_alloc = ALLOC_SEEN; if (expr && def_sc == STATIC && sc == EXTERN) { warning("%s redeclared extern", idf->id_text); def->df_sc = EXTERN; } if (expr) { /* code only if initialized */ #ifndef PREPEND_SCOPES code_scope(idf->id_text, def); #endif PREPEND_SCOPES def->df_alloc = ALLOC_DONE; C_df_dnam(idf->id_text); } } else if (lvl >= L_LOCAL) { /* local variable */ /* STATIC, EXTERN, GLOBAL, IMPLICIT, AUTO or REGISTER */ switch (def_sc) { case STATIC: if (fund == FUNCTION) { /* should produce "inp $function" ??? */ break; } /* they are handled on the spot and get an integer label in EM. */ #ifdef DBSYMTAB if (options['g'] && ! expr) { stb_string(def, sc, idf->id_text); } #endif /* DBSYMTAB */ C_df_dlb((label)def->df_address); if (expr) { /* there is an initialisation */ } else { /* produce blank space */ if (size <= 0) { error("size of %s unknown", idf->id_text); size = (arith)0; } C_bss_cst(ATW(size), (arith)0, 1); } break; case EXTERN: if (expr && !is_anon_idf(idf) && level != L_GLOBAL) error("cannot initialize extern in block" , idf->id_text); case GLOBAL: case IMPLICIT: /* we are sure there is no expression */ break; case AUTO: case REGISTER: #ifdef DBSYMTAB if (options['g']) { stb_string(def, sc, idf->id_text); } #endif /* DBSYMTAB */ if (expr) loc_init(expr, idf); else if ((fund == ARRAY) && (def->df_type->tp_size == (arith)-1)) { error("size for local %s unknown" , idf->id_text); } break; default: crash("bad local storage class"); /*NOTREACHED*/ } } } loc_init(expr, id) struct expr *expr; struct idf *id; { /* loc_init() generates code for the assignment of expression expr to the local variable described by id. It frees the expression afterwards. */ register struct expr *e = expr; register struct def *df = id->id_def; register struct type *tp = df->df_type; static arith tmpoffset = 0; static arith unknownsize = 0; ASSERT(df->df_sc != STATIC); switch (tp->tp_fund) { case ARRAY: if (tp->tp_size == (arith) -1) unknownsize = 1; case STRUCT: case UNION: if (e != (struct expr *) 0) { break; /* switch */ } else if (!tmpoffset) {/* first time for this variable */ tmpoffset = df->df_address; df->df_address = data_label(); C_df_dlb((label)df->df_address); } else { C_lae_dlb((label)df->df_address, (arith)0); load_block(tp->tp_size, 1); if (unknownsize) { /* tmpoffset += tp->tp_size; */ unknownsize = 0; tmpoffset = NewLocal(tp->tp_size , tp->tp_align , regtype(tp) , df->df_sc); } C_lal(tmpoffset); store_block(tp->tp_size, 1); df->df_address = tmpoffset; tmpoffset = 0; } #ifdef DBSYMTAB if (options['g']) { stb_string(df, AUTO, id->id_text); } #endif /* DBSYMTAB */ return; } if (ISCOMMA(e)) { /* embraced: int i = {12}; */ while (e) { loc_init(e->OP_LEFT, id); e = e->OP_RIGHT; } } else { /* not embraced */ ch3cast(&expr, '=', tp); /* may modify expr */ #ifndef LINT { struct value vl; EVAL(expr, RVAL, TRUE, NO_LABEL, NO_LABEL); vl.vl_class = Name; vl.vl_data.vl_idf = id; vl.vl_value = (arith)0; store_val(&vl, tp); } #else LINT df->df_set = 1; #endif LINT free_expression(expr); } } bss(idf) register struct idf *idf; { /* bss() allocates bss space for the global idf. */ register struct def *df = idf->id_def; #ifndef PREPEND_SCOPES code_scope(idf->id_text, df); #endif PREPEND_SCOPES #ifdef DBSYMTAB if (options['g']) { stb_string(df, df->df_sc, idf->id_text); } #endif /* DBSYMTAB */ C_df_dnam(idf->id_text); C_bss_cst(ATW(df->df_type->tp_size), (arith)0, 1); } formal_cvt(hasproto,df) int hasproto; register struct def *df; { /* formal_cvt() converts a formal parameter of type char or short from int to that type. It also converts a formal parameter of type float from a double to a float. */ register struct type *tp = df->df_type; if (tp->tp_size != int_size && (tp->tp_fund == CHAR || tp->tp_fund == SHORT) ) { LoadLocal(df->df_address, int_size); /* conversion(int_type, df->df_type); ??? No, you can't do this on the stack! (CJ) */ StoreLocal(df->df_address, tp->tp_size); } else if (tp->tp_size != double_size && tp->tp_fund == FLOAT && !hasproto) { LoadLocal(df->df_address, double_size); conversion(double_type, float_type); StoreLocal(df->df_address, tp->tp_size); } } #ifdef LINT /*ARGSUSED*/ #endif LINT code_expr(expr, val, code, tlbl, flbl) struct expr *expr; label tlbl, flbl; { /* code_expr() is the parser's interface to the expression code generator. If line number trace is wanted, it generates a lin instruction. EVAL() is called directly. */ #ifndef LINT if (! options['L']) /* profiling */ C_lin((arith)(expr->ex_line)); #ifdef DBSYMTAB if (options['g']) db_line(expr->ex_file, (int)expr->ex_line); #endif EVAL(expr, val, code, tlbl, flbl); #else LINT lint_expr(expr, code ? USED : IGNORED); #endif LINT } /* The FOR/WHILE/DO/SWITCH stacking mechanism: stack_stmt() has to be called at the entrance of a for, while, do or switch statement to indicate the EM labels where a subsequent break or continue causes the program to jump to. */ static struct stmt_block *stmt_stack; /* top of statement stack */ /* code_break() generates EM code needed at the occurrence of "break": it generates a branch instruction to the break label of the innermost statement in which break has a meaning. As "break" is legal in any of 'while', 'do', 'for' or 'switch', which are the only ones that are stacked, only the top of the stack is interesting. */ code_break() { register struct stmt_block *stmt_block = stmt_stack; if (stmt_block) C_bra(stmt_block->st_break); else error("break not inside for, while, do or switch"); } /* code_continue() generates EM code needed at the occurrence of "continue": it generates a branch instruction to the continue label of the innermost statement in which continue has a meaning. */ code_continue() { register struct stmt_block *stmt_block = stmt_stack; while (stmt_block) { if (stmt_block->st_continue) { C_bra(stmt_block->st_continue); return; } stmt_block = stmt_block->next; } error("continue not inside for, while or do"); } stack_stmt(break_label, cont_label) label break_label, cont_label; { register struct stmt_block *stmt_block = new_stmt_block(); stmt_block->next = stmt_stack; stmt_block->st_break = break_label; stmt_block->st_continue = cont_label; stmt_stack = stmt_block; } unstack_stmt() { /* unstack_stmt() unstacks the data of a statement which may contain break or continue */ register struct stmt_block *sbp = stmt_stack; stmt_stack = sbp->next; free_stmt_block(sbp); } static label prc_name; prc_entry(name) char *name; { if (options['p']) { C_df_dlb(prc_name = data_label()); C_rom_scon(name, (arith) (strlen(name) + 1)); C_lae_dlb(prc_name, (arith) 0); C_cal("procentry"); C_asp(pointer_size); } } prc_exit() { if (options['p']) { C_lae_dlb(prc_name, (arith) 0); C_cal("procexit"); C_asp(pointer_size); } } #ifdef DBSYMTAB db_line(file, line) char *file; int line; { static int oldline; static char *oldfile; if (file != oldfile || line != oldline) { C_ms_std((char *) 0, N_SLINE, line); oldline = line; oldfile = file; } } #endif