#include "mcg.h" static struct basicblock* current_bb; static int stackptr; static struct ir* stack[64]; static struct ir* convert(struct ir* src, int destsize, int opcodebase); static struct ir* appendir(struct ir* ir); static void reset_stack(void) { stackptr = 0; } static void push(struct ir* ir) { if (stackptr == sizeof(stack)/sizeof(*stack)) fatal("stack overflow"); /* If we try to push something which is too small, convert it to a word * first. */ if (ir->size < EM_wordsize) ir = convert(ir, EM_wordsize, IR_CIU1); stack[stackptr++] = ir; } static struct ir* pop(int size) { if (stackptr == 0) { /* Nothing in our fake stack, so we have to read from the real stack. */ if (size < EM_wordsize) size = EM_wordsize; return appendir( new_ir0( IR_POP, size ) ); } else { struct ir* ir = stack[--stackptr]; /* If we try to pop something which is smaller than a word, convert it first. */ if (size < EM_wordsize) ir = convert(ir, size, IR_CIU1); if (ir->size != size) fatal("expected an item on stack of size %d, but got %d\n", size, ir->size); return ir; } } static void print_stack(void) { int i; tracef('E', "E: stack:"); for (i=0; iid, ir->size); } tracef('E', " (top)\n"); } static struct ir* appendir(struct ir* ir) { int i; assert(current_bb != NULL); array_appendu(¤t_bb->irs, ir); ir_print('0', ir); return ir; } static void materialise_stack(void) { int i; for (i=0; isize, ir ) ); } reset_stack(); } void tb_filestart(void) { } void tb_fileend(void) { } void tb_regvar(struct procedure* procedure, arith offset, int size, int type, int priority) { struct local* local = calloc(1, sizeof(*local)); local->size = size; local->offset = offset; local->is_register = true; imap_put(&procedure->locals, offset, local); } static struct ir* address_of_external(const char* label, arith offset) { if (offset != 0) return new_ir2( IR_ADD, EM_pointersize, new_labelir(label), new_wordir(offset) ); else return new_labelir(label); } static struct ir* convert(struct ir* src, int destsize, int opcode) { switch (src->size) { case 1: opcode += 0; break; case 2: opcode += 1; break; case 4: opcode += 2; break; case 8: opcode += 3; break; default: fatal("can't convert from things of size %d", src->size); } return new_ir1( opcode, destsize, src ); } static struct ir* tristate_compare(int size, int opcode) { struct ir* right = pop(size); struct ir* left = pop(size); return new_ir2( opcode, EM_wordsize, left, right ); } static void simple_convert(int opcode) { struct ir* destsize = pop(EM_wordsize); struct ir* srcsize = pop(EM_wordsize); struct ir* value; assert(srcsize->opcode == IR_CONST); assert(destsize->opcode == IR_CONST); value = pop(srcsize->u.ivalue); push( convert(value, destsize->u.ivalue, opcode) ); } static void insn_simple(int opcode) { switch (opcode) { case op_bra: { struct ir* dest = pop(EM_pointersize); materialise_stack(); appendir( new_ir1( IR_JUMP, 0, dest ) ); break; } case op_cii: simple_convert(IR_CII1); break; case op_ciu: simple_convert(IR_CIU1); break; case op_cui: simple_convert(IR_CUI1); break; case op_cmp: push( tristate_compare(EM_pointersize, IR_COMPAREU) ); break; case op_teq: push( new_ir1( IR_IFEQ, EM_wordsize, pop(EM_wordsize) ) ); break; case op_cai: { struct ir* dest = pop(EM_pointersize); materialise_stack(); appendir( new_ir1( IR_CALL, 0, dest ) ); break; } case op_inc: { push( new_ir2( IR_ADD, EM_wordsize, pop(EM_wordsize), new_wordir(1) ) ); break; } case op_dec: { push( new_ir2( IR_SUB, EM_wordsize, pop(EM_wordsize), new_wordir(1) ) ); break; } case op_lim: { push( new_ir1( IR_LOAD, 2, new_labelir(".ignmask") ) ); break; } case op_sim: { appendir( new_ir2( IR_STORE, 2, new_labelir(".ignmask"), pop(EM_wordsize) ) ); break; } case op_lni: { /* Increment line number --- ignore. */ break; } default: fatal("treebuilder: unknown simple instruction '%s'", em_mnem[opcode - sp_fmnem]); } } static void simple_branch2(int opcode, int size, struct basicblock* truebb, struct basicblock* falsebb, int irop) { struct ir* right = pop(size); struct ir* left = pop(size); materialise_stack(); appendir( new_ir2( irop, 0, new_ir2( IR_COMPARES, size, left, right ), new_ir2( IR_PAIR, 0, new_bbir(truebb), new_bbir(falsebb) ) ) ); } static void compare0_branch2(int opcode, struct basicblock* truebb, struct basicblock* falsebb, int irop) { push( new_wordir(0) ); simple_branch2(opcode, EM_wordsize, truebb, falsebb, irop); } static void insn_bvalue(int opcode, struct basicblock* leftbb, struct basicblock* rightbb) { switch (opcode) { case op_zeq: compare0_branch2(opcode, leftbb, rightbb, IR_CJUMPEQ); break; case op_zlt: compare0_branch2(opcode, leftbb, rightbb, IR_CJUMPLT); break; case op_zle: compare0_branch2(opcode, leftbb, rightbb, IR_CJUMPLE); break; case op_zne: compare0_branch2(opcode, rightbb, leftbb, IR_CJUMPEQ); break; case op_zge: compare0_branch2(opcode, rightbb, leftbb, IR_CJUMPLT); break; case op_zgt: compare0_branch2(opcode, rightbb, leftbb, IR_CJUMPLE); break; case op_beq: simple_branch2(opcode, EM_wordsize, leftbb, rightbb, IR_CJUMPEQ); break; case op_blt: simple_branch2(opcode, EM_wordsize, leftbb, rightbb, IR_CJUMPLT); break; case op_ble: simple_branch2(opcode, EM_wordsize, leftbb, rightbb, IR_CJUMPLE); break; case op_bne: simple_branch2(opcode, EM_wordsize, rightbb, leftbb, IR_CJUMPEQ); break; case op_bge: simple_branch2(opcode, EM_wordsize, rightbb, leftbb, IR_CJUMPLT); break; case op_bgt: simple_branch2(opcode, EM_wordsize, rightbb, leftbb, IR_CJUMPLE); break; case op_bra: { materialise_stack(); appendir( new_ir1( IR_JUMP, 0, new_bbir(leftbb) ) ); break; } case op_lae: push( new_bbir(leftbb) ); break; default: fatal("treebuilder: unknown bvalue instruction '%s'", em_mnem[opcode - sp_fmnem]); } } static void simple_alu1(int opcode, int size, int irop) { struct ir* val = pop(size); push( new_ir1( irop, size, val ) ); } static void simple_alu2(int opcode, int size, int irop) { struct ir* right = pop(size); struct ir* left = pop(size); push( new_ir2( irop, size, left, right ) ); } static struct ir* extract_block_refs(struct basicblock* bb) { struct ir* outir = NULL; int i; for (i=0; iems.count; i++) { struct em* em = bb->ems.item[i]; assert(em->opcode == op_bra); assert(em->paramtype == PARAM_BVALUE); outir = new_ir2( IR_PAIR, 0, new_bbir(em->u.bvalue.left), outir ); } return outir; } static void change_by(struct ir* address, int amount) { appendir( new_ir2( IR_STORE, EM_wordsize, address, new_ir2( IR_ADD, EM_wordsize, new_ir1( IR_LOAD, EM_wordsize, address ), new_wordir(amount) ) ) ); } static void insn_ivalue(int opcode, arith value) { switch (opcode) { case op_adi: simple_alu2(opcode, value, IR_ADD); break; case op_sbi: simple_alu2(opcode, value, IR_SUB); break; case op_mli: simple_alu2(opcode, value, IR_MUL); break; case op_dvi: simple_alu2(opcode, value, IR_DIV); break; case op_rmi: simple_alu2(opcode, value, IR_MOD); break; case op_sli: simple_alu2(opcode, value, IR_ASL); break; case op_sri: simple_alu2(opcode, value, IR_ASR); break; case op_ngi: simple_alu1(opcode, value, IR_NEG); break; case op_adu: simple_alu2(opcode, value, IR_ADD); break; case op_sbu: simple_alu2(opcode, value, IR_SUB); break; case op_mlu: simple_alu2(opcode, value, IR_MUL); break; case op_slu: simple_alu2(opcode, value, IR_LSL); break; case op_sru: simple_alu2(opcode, value, IR_LSR); break; case op_and: simple_alu2(opcode, value, IR_AND); break; case op_ior: simple_alu2(opcode, value, IR_OR); break; case op_xor: simple_alu2(opcode, value, IR_EOR); break; case op_com: simple_alu1(opcode, value, IR_NOT); break; case op_adf: simple_alu2(opcode, value, IR_ADDF); break; case op_sbf: simple_alu2(opcode, value, IR_SUBF); break; case op_mlf: simple_alu2(opcode, value, IR_MULF); break; case op_dvf: simple_alu2(opcode, value, IR_DIVF); break; case op_ngf: simple_alu1(opcode, value, IR_NEGF); break; case op_lol: push( new_ir1( IR_LOAD, EM_wordsize, new_localir(value) ) ); break; case op_stl: appendir( new_ir2( IR_STORE, EM_wordsize, new_localir(value), pop(EM_wordsize) ) ); break; case op_lal: push( new_localir(value) ); break; case op_lil: push( new_ir1( IR_LOAD, EM_wordsize, new_ir1( IR_LOAD, EM_wordsize, new_localir(value) ) ) ); break; case op_sil: appendir( new_ir2( IR_STORE, EM_wordsize, new_ir1( IR_LOAD, EM_wordsize, new_localir(value) ), pop(EM_wordsize) ) ); break; case op_inl: change_by(new_localir(value), 1); break; case op_del: change_by(new_localir(value), -1); break; case op_zrl: appendir( new_ir2( IR_STORE, EM_wordsize, new_localir(value), new_wordir(0) ) ); break; case op_loc: push( new_wordir(value) ); break; case op_loi: push( new_ir1( IR_LOAD, value, pop(EM_pointersize) ) ); break; case op_lof: { struct ir* ptr = pop(EM_pointersize); push( new_ir1( IR_LOAD, EM_wordsize, new_ir2( IR_ADD, EM_pointersize, ptr, new_wordir(value) ) ) ); break; } case op_sti: { struct ir* ptr = pop(EM_pointersize); struct ir* val = pop(value); appendir( new_ir2( IR_STORE, value, ptr, val ) ); break; } case op_stf: { struct ir* ptr = pop(EM_pointersize); struct ir* val = pop(value); appendir( new_ir2( IR_STORE, EM_wordsize, new_ir2( IR_ADD, EM_pointersize, ptr, new_wordir(value) ), val ) ); break; } case op_cmi: push( tristate_compare(value, IR_COMPARES) ); break; case op_cmu: case op_cms: push( tristate_compare(value, IR_COMPAREU) ); break; case op_ads: { struct ir* off = pop(value); struct ir* ptr = pop(EM_pointersize); if (value != EM_pointersize) off = convert(off, EM_pointersize, IR_CII1); push( new_ir2( IR_ADD, EM_pointersize, ptr, off ) ); break; } case op_adp: { struct ir* ptr = pop(EM_pointersize); push( new_ir2( IR_ADD, EM_pointersize, ptr, new_wordir(value) ) ); break; } case op_sbs: { struct ir* right = pop(EM_pointersize); struct ir* left = pop(EM_pointersize); struct ir* delta = new_ir2( IR_SUB, EM_pointersize, left, right ); if (value != EM_pointersize) delta = convert(delta, value, IR_CII1); push(delta); break; } case op_dup: { struct ir* v = pop(value); appendir(v); push(v); push(v); break; } case op_asp: { switch (value) { case 0: break; case -1: case -2: case -4: case -8: push(new_anyir(-value)); break; default: while ((value > 0) && (stackptr > 0)) { struct ir* ir = pop(stack[stackptr-1]->size); value -= ir->size; } if (value != 0) { appendir( new_ir1( IR_STACKADJUST, EM_pointersize, new_wordir(value) ) ); } break; } break; } case op_ret: { if (value > 0) { struct ir* retval = pop(value); materialise_stack(); appendir( new_ir1( IR_SETRET, value, retval ) ); } if (!current_proc->exit) { current_proc->exit = bb_get(NULL); array_append(¤t_proc->blocks, current_proc->exit); /* This is actually ignored --- the entire block gets special * treatment. But a lot of the rest of the code assumes that * all basic blocks have one instruction, so we insert one. */ array_append(¤t_proc->exit->irs, new_ir0( IR_RET, 0 ) ); } appendir( new_ir1( IR_JUMP, 0, new_bbir(current_proc->exit) ) ); break; } case op_lfr: { push( appendir( new_ir0( IR_GETRET, value ) ) ); break; } case op_csa: case op_csb: { const char* helper = aprintf(".%s%d", (opcode == op_csa) ? "csa" : "csb", value); struct ir* descriptor = pop(EM_pointersize); if (descriptor->opcode != IR_LABEL) fatal("csa/csb are only supported if they refer " "directly to a descriptor block"); push(descriptor); materialise_stack(); appendir( new_ir2( IR_JUMP, 0, new_labelir(helper), extract_block_refs(bb_get(descriptor->u.lvalue)) ) ); break; } case op_sar: case op_lar: case op_aar: { const char* helper; if (value != EM_wordsize) fatal("sar/lar/aar are only supported when using " "word-size descriptors"); switch (opcode) { case op_sar: helper = ".sar4"; break; case op_lar: helper = ".lar4"; break; case op_aar: helper = ".aar4"; break; } materialise_stack(); appendir( new_ir1( IR_CALL, 0, new_labelir(helper) ) ); push( new_ir0( IR_GETRET, EM_wordsize ) ); break; } case op_lxl: { struct ir* ir; /* Walk the static chain. */ ir = new_ir0( IR_GETFP, EM_pointersize ); while (value--) { ir = new_ir1( IR_CHAINFP, EM_pointersize, ir ); } push(ir); break; } case op_lxa: { struct ir* ir; /* Walk the static chain. */ ir = new_ir0( IR_GETFP, EM_pointersize ); while (value--) { ir = new_ir1( IR_CHAINFP, EM_pointersize, ir ); } push( new_ir1( IR_FPTOARGS, EM_pointersize, ir ) ); break; } case op_lin: { /* Set line number --- ignore. */ break; } default: fatal("treebuilder: unknown ivalue instruction '%s'", em_mnem[opcode - sp_fmnem]); } } static void insn_lvalue(int opcode, const char* label, arith offset) { switch (opcode) { case op_lae: push( address_of_external(label, offset) ); break; case op_loe: push( new_ir1( IR_LOAD, EM_wordsize, address_of_external(label, offset) ) ); break; case op_ste: appendir( new_ir2( IR_STORE, EM_wordsize, address_of_external(label, offset), pop(EM_wordsize) ) ); break; case op_zre: appendir( new_ir2( IR_STORE, EM_wordsize, address_of_external(label, offset), new_wordir(0) ) ); break; case op_cal: assert(offset == 0); materialise_stack(); appendir( new_ir1( IR_CALL, 0, new_labelir(label) ) ); break; case op_bra: assert(offset == 0); materialise_stack(); appendir( new_ir1( IR_JUMP, 0, new_labelir(label) ) ); break; case op_fil: { /* Set filename --- ignore. */ break; } default: fatal("treebuilder: unknown lvalue instruction '%s'", em_mnem[opcode - sp_fmnem]); } } static void generate_tree(struct basicblock* bb) { int i; tracef('0', "0: block %s\n", bb->name); current_bb = bb; reset_stack(); for (i=0; iems.count; i++) { struct em* em = bb->ems.item[i]; tracef('E', "E: read %s ", em_mnem[em->opcode - sp_fmnem]); switch (em->paramtype) { case PARAM_NONE: tracef('E', "\n"); insn_simple(em->opcode); break; case PARAM_IVALUE: tracef('E', "value=%d\n", em->u.ivalue); insn_ivalue(em->opcode, em->u.ivalue); break; case PARAM_LVALUE: tracef('E', "label=%s offset=%d\n", em->u.lvalue.label, em->u.lvalue.offset); insn_lvalue(em->opcode, em->u.lvalue.label, em->u.lvalue.offset); break; case PARAM_BVALUE: tracef('E', "true=%s", em->u.bvalue.left->name); if (em->u.bvalue.right) tracef('E', " false=%s", em->u.bvalue.right->name); tracef('E', "\n"); insn_bvalue(em->opcode, em->u.bvalue.left, em->u.bvalue.right); break; default: assert(0); } if (tracing('E')) print_stack(); } assert(stackptr == 0); } void tb_procedure(void) { int i; for (i=0; iblocks.count; i++) generate_tree(current_proc->blocks.item[i]); } /* vim: set sw=4 ts=4 expandtab : */