/* * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* $Header$ */ #include #include extern int errno; double tan(x) double x; { /* First reduce range to [0, pi/4]. Then use approximation tan(x*pi/4) = x * P(x*x)/Q(x*x). Hart & Cheney # 4288 Use: tan(x) = 1/tan(pi/2 - x) tan(-x) = -tan(x) tan(x+k*pi) = tan(x) */ static double p[5] = { -0.5712939549476836914932149599e+10, 0.4946855977542506692946040594e+09, -0.9429037070546336747758930844e+07, 0.5282725819868891894772108334e+05, -0.6983913274721550913090621370e+02 }; static double q[6] = { -0.7273940551075393257142652672e+10, 0.2125497341858248436051062591e+10, -0.8000791217568674135274814656e+08, 0.8232855955751828560307269007e+06, -0.2396576810261093558391373322e+04, 0.1000000000000000000000000000e+01 }; int negative = x < 0; double tmp, tmp1, tmp2; double xsq; int invert = 0; int ip; if (negative) x = -x; /* first reduce to [0, pi) */ if (x >= M_PI) { if (x <= 0x7fffffff) { /* Use extended precision to calculate reduced argument. Split pi in 2 parts a1 and a2, of which the first only uses some bits of the mantissa, so that n * a1 is exactly representable, where n is the integer part of x/pi. Here we used 12 bits of the mantissa for a1. Also split x in integer part x1 and fraction part x2. We then compute x-n*pi as ((x1 - n*a1) + x2) - n*a2. */ #define A1 3.14111328125 #define A2 0.00047937233979323846264338327950288 double n = (long) (x / M_PI); double x1 = (long) x; double x2 = x - x1; x = x1 - n * A1; x += x2; x -= n * A2; #undef A1 #undef A2 } else { extern double modf(); x = modf(x/M_PI, &tmp) * M_PI; } } /* because the approximation uses x*pi/4, we reverse this */ x /= M_PI_4; ip = (int) x; x -= ip; switch(ip) { case 0: /* [0,pi/4] */ break; case 1: /* [pi/4, pi/2] tan(x+pi/4) = 1/tan(pi/2 - (x+pi/4)) = 1/tan(pi/4 - x) */ invert = 1; x = 1.0 - x; break; case 2: /* [pi/2, 3pi/4] tan(x+pi/2) = tan((x+pi/2)-pi) = -tan(pi/2 - x) = -1/tan(x) */ negative = ! negative; invert = 1; break; case 3: /* [3pi/4, pi) tan(x+3pi/4) = tan(x-pi/4) = - tan(pi/4-x) */ x = 1.0 - x; negative = ! negative; break; } xsq = x * x; tmp1 = x*POLYNOM4(xsq, p); tmp2 = POLYNOM5(xsq, q); tmp = tmp1 / tmp2; if (invert) { if (tmp == 0.0) { errno = ERANGE; tmp = HUGE; } else tmp = tmp2 / tmp1; } return negative ? -tmp : tmp; }