/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". */ /* $Header$ */ /* DECLARATION SYNTAX PARSER */ { #include "lint.h" #include #include "nobitfield.h" #include "debug.h" #include #include "arith.h" #include "LLlex.h" #include "label.h" #include "code.h" #include "idf.h" #include "type.h" #include "proto.h" #include "struct.h" #include "field.h" #include "decspecs.h" #include "def.h" #include "declar.h" #include "label.h" #include "expr.h" #include "sizes.h" #include "level.h" #ifdef LINT #include "l_lint.h" #include "l_state.h" #endif LINT } /* 3.5 */ declaration {struct decspecs Ds;} : {Ds = null_decspecs;} decl_specifiers(&Ds) init_declarator_list(&Ds)? ';' ; /* A `decl_specifiers' describes a sequence of a storage_class_specifier, an unsigned_specifier, a size_specifier and a simple type_specifier, which may occur in arbitrary order and each of which may be absent; at least one of them must be present, however, since the totally empty case has already be dealt with in `external_definition'. This means that something like: unsigned extern int short xx; is perfectly legal C. On top of that, multiple occurrences of storage_class_specifiers, unsigned_specifiers and size_specifiers are errors, but a second type_specifier should end the decl_specifiers and be treated as the name to be declared. Such a language is not easily expressed in a grammar; enumeration of the permutations is unattractive. We solve the problem by having a regular grammar for the "soft" items, handling the single occurrence of the type_specifier in the grammar (we have no choice), collecting all data in a `struct decspecs' and turning that data structure into what we want. The existence of declarations like short typedef yepp; makes all hope of writing a specific grammar for typedefs illusory. */ decl_specifiers /* non-empty */ (register struct decspecs *ds;) /* Reads a non-empty decl_specifiers and fills the struct decspecs *ds. */ : [ other_specifier(ds)+ [%if (DOT != IDENTIFIER || AHEAD == IDENTIFIER) /* the thin ice in R.M. 11.1 */ single_type_specifier(ds) other_specifier(ds)* | empty ] | single_type_specifier(ds) other_specifier(ds)* ] {do_decspecs(ds);} ; /* 3.5.1 & 3.5.2 (partially) & 3.5.3 (partially) */ other_specifier(register struct decspecs *ds;) : [ AUTO | STATIC | EXTERN | TYPEDEF | REGISTER ] { if (ds->ds_sc_given) error("repeated storage class specifier"); ds->ds_sc_given = 1; ds->ds_sc = DOT; } | [ SHORT | LONG ] { if (ds->ds_size) error("repeated size specifier"); ds->ds_size = DOT; } | [ SIGNED | UNSIGNED ] { if (ds->ds_unsigned != 0) error("repeated sign specifier"); ds->ds_unsigned = DOT; } | /* This qualifier applies to the top type. E.g. const float * is a pointer to const float. */ [ VOLATILE | CONST ] { if (DOT == VOLATILE) { if (ds->ds_typequal & TQ_VOLATILE) error("repeated type qualifier"); ds->ds_typequal |= TQ_VOLATILE; } if (DOT == CONST) { if (ds->ds_typequal & TQ_CONST) error("repeated type qualifier"); ds->ds_typequal |= TQ_CONST; } } ; /* 3.5.2 */ type_specifier(struct type **tpp;) /* Used in struct/union declarations and in casts; only the type is relevant. */ {struct decspecs Ds; Ds = null_decspecs;} : decl_specifiers(&Ds) { if (Ds.ds_sc_given) error("storage class ignored"); if (Ds.ds_sc == REGISTER) error("register ignored"); } {*tpp = Ds.ds_type;} ; single_type_specifier(register struct decspecs *ds;): %default TYPE_IDENTIFIER /* this includes INT, CHAR, etc. */ {idf2type(dot.tk_idf, &ds->ds_type);} | IDENTIFIER { error("%s is not a type identifier", dot.tk_idf->id_text); ds->ds_type = error_type; if (dot.tk_idf->id_def) { dot.tk_idf->id_def->df_type = error_type; dot.tk_idf->id_def->df_sc = TYPEDEF; } } | struct_or_union_specifier(&ds->ds_type) | enum_specifier(&ds->ds_type) ; /* 3.5 */ init_declarator_list(struct decspecs *ds;): init_declarator(ds) [ ',' init_declarator(ds) ]* ; init_declarator(register struct decspecs *ds;) { struct declarator Dc; } : { Dc = null_declarator; } [ declarator(&Dc) { reject_params(&Dc); def_proto(&Dc); declare_idf(ds, &Dc, level); #ifdef LINT lint_declare_idf(Dc.dc_idf, ds->ds_sc); #endif LINT } [ initializer(Dc.dc_idf, ds->ds_sc) | { code_declaration(Dc.dc_idf, (struct expr *) 0, level, ds->ds_sc); } ] ] { #ifdef LINT add_auto(Dc.dc_idf); #endif LINT remove_declarator(&Dc); } ; /* 3.5.7: initializer */ initializer(struct idf *idf; int sc;) { struct expr *expr = (struct expr *) 0; int fund = idf->id_def->df_type->tp_fund; int autoagg = (level >= L_LOCAL && sc != STATIC && ( fund == STRUCT || fund == UNION || fund == ARRAY)); int globalflag = level == L_GLOBAL || (level >= L_LOCAL && sc == STATIC); } : { if (idf->id_def->df_type->tp_fund == FUNCTION) { error("illegal initialization of function"); idf->id_def->df_type->tp_fund = ERRONEOUS; } if (level == L_FORMAL2) warning("illegal initialization of formal parameter (ignored)"); } '=' { #ifdef LINT lint_statement(); #endif LINT if (globalflag) { struct expr ex; code_declaration(idf, &ex, level, sc); } else if (autoagg) loc_init((struct expr *) 0, idf); } initial_value((globalflag || autoagg) ? &(idf->id_def->df_type) : (struct type **)0, &expr) { if (! globalflag) { if (idf->id_def->df_type->tp_fund == FUNCTION) { free_expression(expr); expr = 0; } #ifdef DEBUG print_expr("initializer-expression", expr); #endif DEBUG #ifdef LINT change_state(idf, SET); #endif LINT if (autoagg) loc_init((struct expr *) 0, idf); else code_declaration(idf, expr, level, sc); } init_idf(idf); } ; /* Functions yielding pointers to functions must be declared as, e.g., int (*hehe(par1, par2))() char *par1, *par2; {} Since the function heading is read as a normal declarator, we just include the (formal) parameter list in the declarator description list dc. */ /* 3.5.4 */ declarator(register struct declarator *dc;) { struct formal *fm = NO_PARAMS; struct proto *pl = NO_PROTO; arith count; int qual; } : primary_declarator(dc) [/*%while(1)*/ '(' [ %if (DOT != IDENTIFIER && DOT != ')') parameter_type_list(&pl) | formal_list(&fm) | empty ] ')' { add_decl_unary(dc, FUNCTION, 0, (arith)0, fm, pl); fm = NO_PARAMS; } | arrayer(&count) {add_decl_unary(dc, ARRAY, 0, count, NO_PARAMS, NO_PROTO);} ]* | pointer(&qual) declarator(dc) {add_decl_unary(dc, POINTER, qual, (arith)0, NO_PARAMS, NO_PROTO);} ; primary_declarator(register struct declarator *dc;) : identifier(&dc->dc_idf) | '(' declarator(dc) ')' ; arrayer(arith *sizep;) { struct expr *expr; } : '[' [ constant_expression(&expr) { check_array_subscript(expr); *sizep = expr->VL_VALUE; free_expression(expr); } | empty { *sizep = (arith)-1; } ] ']' ; formal_list (struct formal **fmp;) : formal(fmp) [ %persistent ',' formal(fmp) ]* ; formal(struct formal **fmp;) {struct idf *idf; } : identifier(&idf) { register struct formal *new = new_formal(); new->fm_idf = idf; new->next = *fmp; *fmp = new; } ; /* Change 2 */ enum_specifier(register struct type **tpp;) { struct idf *idf; arith l = (arith)0; } : ENUM [ {declare_struct(ENUM, (struct idf *) 0, tpp);} enumerator_pack(*tpp, &l) | identifier(&idf) [ {declare_struct(ENUM, idf, tpp);} enumerator_pack(*tpp, &l) | {apply_struct(ENUM, idf, tpp);} empty ] ] ; enumerator_pack(register struct type *tp; arith *lp;) : '{' enumerator(tp, lp) [%while (AHEAD != '}') ',' enumerator(tp, lp) ]* [ ',' {warning("unexpected trailing comma in enumerator pack");} ]? '}' {tp->tp_size = int_size;} /* fancy implementations that put small enums in 1 byte or so should start here. */ ; enumerator(struct type *tp; arith *lp;) { struct idf *idf; struct expr *expr; } : identifier(&idf) [ '=' constant_expression(&expr) { *lp = expr->VL_VALUE; free_expression(expr); } ]? {declare_enum(tp, idf, (*lp)++);} ; /* 8.5 */ struct_or_union_specifier(register struct type **tpp;) { int fund; struct idf *idfX; register struct idf *idf; } : [ STRUCT | UNION ] {fund = DOT;} [ { declare_struct(fund, (struct idf *)0, tpp); } struct_declaration_pack(*tpp) | identifier(&idfX) { idf = idfX; } [ { declare_struct(fund, idf, tpp); (idf->id_struct->tg_busy)++; } struct_declaration_pack(*tpp) { (idf->id_struct->tg_busy)--; } | { /* a ';' means an empty declaration (probably) * this means that we have to declare a new * structure. (yegh) */ if (DOT == ';') declare_struct(fund, idf, tpp); else apply_struct(fund, idf, tpp); } empty ] ] ; struct_declaration_pack(register struct type *stp;) { struct sdef **sdefp = &stp->tp_sdef; arith size = (arith)0; } : /* The size is only filled in after the whole struct has been read, to prevent recursive definitions. */ '{' struct_declaration(stp, &sdefp, &size)+ '}' {stp->tp_size = align(size, stp->tp_align);} ; struct_declaration(struct type *stp; struct sdef ***sdefpp; arith *szp;) {struct type *tp;} : type_specifier(&tp) struct_declarator_list(tp, stp, sdefpp, szp) ';' ; struct_declarator_list(struct type *tp, *stp; struct sdef ***sdefpp; arith *szp;) : struct_declarator(tp, stp, sdefpp, szp) [ ',' struct_declarator(tp, stp, sdefpp, szp) ]* ; struct_declarator(struct type *tp; struct type *stp; struct sdef ***sdefpp; arith *szp;) { struct declarator Dc; struct field *fd = 0; } : { Dc = null_declarator; } [ declarator(&Dc) {reject_params(&Dc);} bit_expression(&fd)? | {Dc.dc_idf = gen_idf();} bit_expression(&fd) ] {add_sel(stp, declare_type(tp, &Dc), Dc.dc_idf, sdefpp, szp, fd);} {remove_declarator(&Dc);} ; bit_expression(struct field **fd;) { struct expr *expr; } : { *fd = new_field(); } ':' constant_expression(&expr) { (*fd)->fd_width = expr->VL_VALUE; free_expression(expr); #ifdef NOBITFIELD error("bitfields are not implemented"); #endif NOBITFIELD } ; /* 8.7 */ cast(struct type **tpp;) {struct declarator Dc;} : {Dc = null_declarator;} '(' type_specifier(tpp) abstract_declarator(&Dc) ')' {*tpp = declare_type(*tpp, &Dc);} {remove_declarator(&Dc);} ; /* This code is an abject copy of that of 'declarator', for lack of a two-level grammar. */ abstract_declarator(register struct declarator *dc;) { struct proto *pl = NO_PROTO; arith count; int qual; } : primary_abstract_declarator(dc) [ '(' [ parameter_type_list(&pl) | empty ] ')' {add_decl_unary(dc, FUNCTION, 0, (arith)0, NO_PARAMS, pl);} | arrayer(&count) {add_decl_unary(dc, ARRAY, 0, count, NO_PARAMS, NO_PROTO);} ]* | pointer(&qual) abstract_declarator(dc) {add_decl_unary(dc, POINTER, qual, (arith)0, NO_PARAMS, NO_PROTO);} ; %first first_of_parameter_type_list, parameter_type_list; primary_abstract_declarator(struct declarator *dc;) : [%if (AHEAD == ')' || first_of_parameter_type_list(AHEAD)) empty | '(' abstract_declarator(dc) ')' ] ; parameter_type_list(struct proto **plp;) { int save_level; } : { if (level > L_PROTO) { save_level = level; level = L_PROTO; } else level--; } parameter_decl_list(plp) [ ',' ELLIPSIS { register struct proto *new = new_proto(); new->next = *plp; new->pl_flag = PL_ELLIPSIS; *plp = new; } ]? { check_for_void(*plp); if (level == L_PROTO) level = save_level; else level++; } ; parameter_decl_list(struct proto **plp;) : parameter_decl(plp) [ %while (AHEAD != ELLIPSIS) %persistent ',' parameter_decl(plp) ]* ; parameter_decl(struct proto **plp;) { register struct proto *new = new_proto(); struct declarator Dc; struct decspecs Ds; } : { Dc = null_declarator; Ds = null_decspecs; } decl_specifiers(&Ds) parameter_declarator(&Dc) { add_proto(new, &Ds, &Dc, level); new->next = *plp; *plp = new; } ; /* This is weird. Due to the LR structure of the ANSI C grammar we have to duplicate the actions of 'declarator' and 'abstract_declarator'. Calling these separate, as in parameter_decl: decl_specifiers [ declarator | abstract_declarator ] gives us a conflict on the terminals '(' and '*'. E.i. on some input, it is impossible to decide which rule we take. Combining the two declarators into one common declarator is out of the question, since this results in an empty string for the non-terminal 'declarator'. So we combine the two only for the use of parameter_decl, since this is the only place where they don't give conflicts. However, this makes the grammar messy. */ parameter_declarator(register struct declarator *dc;) { struct formal *fm = NO_PARAMS; struct proto *pl = NO_PROTO; arith count; int qual; } : primary_parameter_declarator(dc) [ '(' [ %if (DOT != IDENTIFIER) parameter_type_list(&pl) | formal_list(&fm) ]? ')' { add_decl_unary(dc, FUNCTION, 0, (arith)0, fm, pl); reject_params(dc); } | arrayer(&count) {add_decl_unary(dc, ARRAY, 0, count, NO_PARAMS, NO_PROTO);} ]* | pointer(&qual) parameter_declarator(dc) {add_decl_unary(dc, POINTER, qual, (arith)0, NO_PARAMS, NO_PROTO);} ; primary_parameter_declarator(register struct declarator *dc;) : [%if (AHEAD == ')' || first_of_parameter_type_list(AHEAD) && (AHEAD != IDENTIFIER)) empty | identifier(&dc->dc_idf) | '(' parameter_declarator(dc) ')' ] ; pointer(int *qual;) : '*' type_qualifier_list(qual) ; /* Type qualifiers may come in three flavours: volatile, const, const volatile. These all have different semantic properties: volatile: means that the object can be modified without prior knowledge of the implementation. const: means that the object can not be modified; thus it's illegal to use this as a l-value. const volatile: means that the object can be modified without prior knowledge of the implementation, but may not be used as a l-value. */ /* 3.5.4 */ type_qualifier_list(int *qual;) : [ [ VOLATILE | CONST ] { *qual = (DOT == VOLATILE) ? TQ_VOLATILE : TQ_CONST; } [ [ VOLATILE | CONST ] { if (DOT == VOLATILE) { if (*qual & TQ_VOLATILE) error("repeated type qualifier"); *qual |= TQ_VOLATILE; } if (DOT == CONST) { if (*qual & TQ_CONST) error("repeated type qualifier"); *qual |= TQ_CONST; } } ]* | empty { *qual = 0; } ] ; empty: ;