/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* C O N S T A N T E X P R E S S I O N H A N D L I N G */ /* $Header$ */ #include "debug.h" #include "target_sizes.h" #include #include #include #include "idf.h" #include "type.h" #include "LLlex.h" #include "node.h" #include "Lpars.h" #include "standards.h" #include "warning.h" #include "const.h" arith full_mask[MAXSIZE];/* full_mask[1] == 0xFF, full_mask[2] == 0xFFFF, .. */ arith max_int[MAXSIZE]; /* max_int[1] == 0x7F, max_int[2] == 0x7FFF, .. */ arith min_int[MAXSIZE]; /* min_int[1] == 0xFFFFFF80, min_int[2] = 0xFFFF8000, ... */ unsigned int wrd_bits; /* number of bits in a word */ extern char options[]; overflow(expp) t_node *expp; { if (expp->nd_type != address_type) { node_warning(expp, W_ORDINARY, "overflow in constant expression"); } } underflow(expp) t_node *expp; { if (expp->nd_type != address_type) { node_warning(expp, W_ORDINARY, "underflow in constant expression"); } } STATIC commonbin(expp) register t_node *expp; { expp->nd_class = Value; expp->nd_token = expp->nd_right->nd_token; CutSize(expp); FreeLR(expp); } cstunary(expp) register t_node *expp; { /* The unary operation in "expp" is performed on the constant expression below it, and the result restored in expp. */ register t_node *right = expp->nd_right; register arith o1 = right->nd_INT; switch(expp->nd_symb) { /* Should not get here case '+': break; */ case '-': if (o1 == min_int[(int)(right->nd_type->tp_size)]) { overflow(expp); } o1 = -o1; break; case NOT: case '~': o1 = !o1; break; default: crash("(cstunary)"); } commonbin(expp); expp->nd_INT = o1; } STATIC divide(pdiv, prem) arith *pdiv, *prem; { /* Unsigned divide *pdiv by *prem, and store result in *pdiv, remainder in *prem */ register arith o1 = *pdiv; register arith o2 = *prem; /* this is more of a problem than you might think on C compilers which do not have unsigned long. */ if (o2 & arith_sign) {/* o2 > max_arith */ if (! (o1 >= 0 || o1 < o2)) { /* this is the unsigned test o1 < o2 for o2 > max_arith */ *prem = o2 - o1; *pdiv = 1; } else { *pdiv = 0; } } else { /* o2 <= max_arith */ arith half, bit, hdiv, hrem, rem; half = (o1 >> 1) & ~arith_sign; bit = o1 & 01; /* now o1 == 2 * half + bit and half <= max_arith and bit <= max_arith */ hdiv = half / o2; hrem = half % o2; rem = 2 * hrem + bit; *pdiv = 2*hdiv; *prem = rem; if (rem < 0 || rem >= o2) { /* that is the unsigned compare rem >= o2 for o2 <= max_arith */ *pdiv += 1; *prem -= o2; } } } cstibin(expp) register t_node *expp; { /* The binary operation in "expp" is performed on the constant expressions below it, and the result restored in expp. This version is for INTEGER expressions. */ register arith o1 = expp->nd_left->nd_INT; register arith o2 = expp->nd_right->nd_INT; register int sz = expp->nd_type->tp_size; assert(expp->nd_class == Oper); assert(expp->nd_left->nd_class == Value); assert(expp->nd_right->nd_class == Value); switch (expp->nd_symb) { case '*': if (o1 > 0 && o2 > 0) { if (max_int[sz] / o1 < o2) overflow(expp); } else if (o1 < 0 && o2 < 0) { if (o1 == min_int[sz] || o2 == min_int[sz] || max_int[sz] / (-o1) < (-o2)) overflow(expp); } else if (o1 > 0) { if (min_int[sz] / o1 > o2) overflow(expp); } else if (o2 > 0) { if (min_int[sz] / o2 > o1) overflow(expp); } o1 *= o2; break; case DIV: if (o2 == 0) { node_error(expp, "division by 0"); return; } #if (-1)/2==0 o1 /= o2; #else if (o1 == 0) break; if ((o1 < 0) != (o2 < 0)) { o1 = o1/o2 + 1; } else { o1 /= o2; } #endif break; case MOD: if (o2 == 0) { node_error(expp, "modulo by 0"); return; } #if (-1)/2==0 o1 %= o2; #else if (o1 == 0) break; if ((o1 < 0) != (o2 < 0)) { o1 -= (o1 / o2 + 1) * o2; } else { o1 %= o2; } #endif break; case '+': if (o1 > 0 && o2 > 0) { if (max_int[sz] - o1 < o2) overflow(expp); } else if (o1 < 0 && o2 < 0) { if (min_int[sz] - o1 > o2) overflow(expp); } o1 += o2; break; case '-': if (o1 >= 0 && o2 < 0) { if (max_int[sz] + o2 < o1) overflow(expp); } else if (o1 < 0 && o2 >= 0) { if (min_int[sz] + o2 > o1) overflow(expp); } o1 -= o2; break; case '<': o1 = (o1 < o2); break; case '>': o1 = (o1 > o2); break; case LESSEQUAL: o1 = (o1 <= o2); break; case GREATEREQUAL: o1 = (o1 >= o2); break; case '=': o1 = (o1 == o2); break; case '#': o1 = (o1 != o2); break; default: crash("(cstibin)"); } commonbin(expp); expp->nd_INT = o1; } cstubin(expp) register t_node *expp; { /* The binary operation in "expp" is performed on the constant expressions below it, and the result restored in expp. */ arith o1 = expp->nd_left->nd_INT; arith o2 = expp->nd_right->nd_INT; register int sz = expp->nd_type->tp_size; arith tmp1, tmp2; assert(expp->nd_class == Oper); assert(expp->nd_left->nd_class == Value); assert(expp->nd_right->nd_class == Value); switch (expp->nd_symb) { case '*': if (o1 == 0 || o2 == 0) { o1 = 0; break; } tmp1 = full_mask[sz]; tmp2 = o2; divide(&tmp1, &tmp2); if (! chk_bounds(o1, tmp1, T_CARDINAL)) overflow(expp); o1 *= o2; break; case DIV: if (o2 == 0) { node_error(expp, "division by 0"); return; } divide(&o1, &o2); break; case MOD: if (o2 == 0) { node_error(expp, "modulo by 0"); return; } divide(&o1, &o2); o1 = o2; break; case '+': if (! chk_bounds(o2, full_mask[sz] - o1, T_CARDINAL)) { overflow(expp); } o1 += o2; break; case '-': if (! chk_bounds(o2, o1, T_CARDINAL)) { if (expp->nd_type->tp_fund == T_INTORCARD) { expp->nd_type = int_type; if (! chk_bounds(min_int[sz], o1 - o2, T_CARDINAL)) { underflow(expp); } } else underflow(expp); } o1 -= o2; break; case '<': o1 = ! chk_bounds(o2, o1, T_CARDINAL); break; case '>': o1 = ! chk_bounds(o1, o2, T_CARDINAL); break; case LESSEQUAL: o1 = chk_bounds(o1, o2, T_CARDINAL); break; case GREATEREQUAL: o1 = chk_bounds(o2, o1, T_CARDINAL); break; case '=': o1 = (o1 == o2); break; case '#': o1 = (o1 != o2); break; case AND: case '&': o1 = (o1 && o2); break; case OR: o1 = (o1 || o2); break; default: crash("(cstubin)"); } commonbin(expp); expp->nd_INT = o1; if (expp->nd_type == bool_type) expp->nd_symb = INTEGER; } cstset(expp) register t_node *expp; { extern arith *MkSet(); register arith *set1, *set2; register arith *resultset; register unsigned int setsize; register int j; assert(expp->nd_right->nd_class == Set); assert(expp->nd_symb == IN || expp->nd_left->nd_class == Set); set2 = expp->nd_right->nd_set; setsize = (unsigned) (expp->nd_right->nd_type->tp_size) / (unsigned) word_size; if (expp->nd_symb == IN) { /* The setsize must fit in an unsigned, as it is allocated with Malloc, so we can do the arithmetic in an unsigned too. */ unsigned i; assert(expp->nd_left->nd_class == Value); expp->nd_left->nd_INT -= expp->nd_right->nd_type->set_low; i = expp->nd_left->nd_INT; expp->nd_class = Value; /* Careful here; use expp->nd_left->nd_INT to see if it falls in the range of the set. Do not use i for this, as i may be truncated. */ expp->nd_INT = (expp->nd_left->nd_INT >= 0 && expp->nd_left->nd_INT < setsize * wrd_bits && (set2[i / wrd_bits] & (1 << (i % wrd_bits)))); FreeSet(set2); expp->nd_symb = INTEGER; FreeLR(expp); return; } set1 = expp->nd_left->nd_set; switch(expp->nd_symb) { case '+': /* Set union */ case '-': /* Set difference */ case '*': /* Set intersection */ case '/': /* Symmetric set difference */ expp->nd_set = resultset = MkSet(expp->nd_type->set_sz); for (j = 0; j < setsize; j++) { switch(expp->nd_symb) { case '+': *resultset = *set1++ | *set2++; break; case '-': *resultset = *set1++ & ~*set2++; break; case '*': *resultset = *set1++ & *set2++; break; case '/': *resultset = *set1++ ^ *set2++; break; } resultset++; } expp->nd_class = Set; break; case GREATEREQUAL: case LESSEQUAL: case '=': case '#': /* Constant set comparisons */ for (j = 0; j < setsize; j++) { switch(expp->nd_symb) { case GREATEREQUAL: if ((*set1 | *set2++) != *set1) break; set1++; continue; case LESSEQUAL: if ((*set2 | *set1++) != *set2) break; set2++; continue; case '=': case '#': if (*set1++ != *set2++) break; continue; } break; } if (j < setsize) { expp->nd_INT = expp->nd_symb == '#'; } else { expp->nd_INT = expp->nd_symb != '#'; } expp->nd_class = Value; expp->nd_symb = INTEGER; break; default: crash("(cstset)"); } FreeSet(expp->nd_left->nd_set); FreeSet(expp->nd_right->nd_set); FreeLR(expp); } cstcall(expp, call) register t_node *expp; { /* a standard procedure call is found that can be evaluated compile time, so do so. */ register t_node *expr; register t_type *tp; assert(expp->nd_class == Call); expr = expp->nd_right->nd_left; tp = expr->nd_type; expp->nd_class = Value; expp->nd_symb = INTEGER; expp->nd_INT = expr->nd_INT; switch(call) { case S_ABS: if (expp->nd_INT < 0) { if (expp->nd_INT <= min_int[(int)(tp->tp_size)]) { overflow(expr); } expp->nd_INT = - expp->nd_INT; } CutSize(expp); break; case S_CAP: if (expp->nd_INT >= 'a' && expp->nd_INT <= 'z') { expp->nd_INT += ('A' - 'a'); } break; case S_MAX: if (tp->tp_fund == T_INTEGER) { expp->nd_INT = max_int[(int)(tp->tp_size)]; } else if (tp == card_type) { expp->nd_INT = full_mask[(int)(int_size)]; } else if (tp->tp_fund == T_SUBRANGE) { expp->nd_INT = tp->sub_ub; } else expp->nd_INT = tp->enm_ncst - 1; break; case S_MIN: if (tp->tp_fund == T_INTEGER) { expp->nd_INT = min_int[(int)(tp->tp_size)]; } else if (tp->tp_fund == T_SUBRANGE) { expp->nd_INT = tp->sub_lb; } else expp->nd_INT = 0; break; case S_ODD: expp->nd_INT &= 1; break; case S_SIZE: expp->nd_INT = tp->tp_size; break; default: crash("(cstcall)"); } expp->nd_right = 0; /* don't deallocate, for further argument checking */ FreeLR(expp); } CutSize(expr) register t_node *expr; { /* The constant value of the expression expr is made to conform to the size of the type of the expression. */ register t_type *tp = BaseType(expr->nd_type); assert(expr->nd_class == Value); if (tp->tp_fund != T_INTEGER) { expr->nd_INT &= full_mask[(int)(tp->tp_size)]; } else { int nbits = (int) (sizeof(arith) - tp->tp_size) * 8; expr->nd_INT = (expr->nd_INT << nbits) >> nbits; } } InitCst() { register int i = 0; register arith bt = (arith)0; while (!(bt < 0)) { i++; bt = (bt << 8) + 0377; if (i == MAXSIZE) fatal("array full_mask too small for this machine"); full_mask[i] = bt; max_int[i] = bt & ~(1L << ((8 * i) - 1)); min_int[i] = - max_int[i]; if (! options['s']) min_int[i]--; } if ((int)long_size > sizeof(arith)) { fatal("sizeof (arith) insufficient on this machine"); } wrd_bits = 8 * (int) word_size; }