/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". */ #ifndef lint static char rcsid[] = "$Header$"; #endif /* * Memory manager. Memory is divided into NMEMS pieces. There is a struct * for each piece telling where it is, how many bytes are used, and how may * are left. If a request for core doesn't fit in the left bytes, an sbrk() * is done and pieces after the one that requested the growth are moved up. * * Unfortunately, we cannot use sbrk to request more memory, because its * result cannot be trusted. More specifically, it does not work properly * on 2.9 BSD, and probably does not work properly on 2.8 BSD and V7 either. * The problem is that "sbrk" adds the increment to the current "break" * WITHOUT testing the carry bit. So, if your break is at 40000, and * you "sbrk(30000)", it will succeed, but your break will be at 4464 * (70000 - 65536). */ #include #include "const.h" #include "assert.h" #include "debug.h" #include "memory.h" static copy_down(); static copy_up(); static free_saved_moduls(); static writelong(); static namecpy(); struct memory mems[NMEMS]; bool incore = TRUE; /* TRUE while everything can be kept in core. */ ind_t core_position = (ind_t)0; /* Index of current module. */ #define AT_LEAST (ind_t)2 /* See comment about string areas. */ #define GRANULE 64 /* power of 2 */ static char *BASE; static ind_t refused; sbreak(incr) ind_t incr; { extern char *sbrk(); extern char *brk(); unsigned int inc; incr = (incr + (GRANULE - 1)) & ~(GRANULE - 1); inc = incr; if ((refused && refused < incr) || inc != incr || BASE + inc < BASE || (int) brk(BASE + inc) == -1) { refused = refused && refused > incr ? incr : refused; return -1; } BASE = sbrk(0); return 0; } /* * Initialize some pieces of core. We hope that this will be our last * real allocation, meaning we've made the right choices. */ init_core() { register char *base; register ind_t total_size; register struct memory *mem; extern char *brk(); extern char *sbrk(); #include "mach.c" total_size = (ind_t)0; /* Will accumulate the sizes. */ BASE = base = sbrk(0); /* First free. */ for (mem = mems; mem < &mems[NMEMS]; mem++) { mem->mem_base = base; mem->mem_full = (ind_t)0; base += mem->mem_left; /* Each piece will start after prev. */ total_size += mem->mem_left; } /* * String areas are special-cased. The first byte is unused as a way to * distinguish a name without string from a name which has the first * string in the string area. */ if (mems[ALLOLCHR].mem_left == 0) total_size += 1; else mems[ALLOLCHR].mem_left -= 1; if (mems[ALLOGCHR].mem_left == 0) total_size += 1; else mems[ALLOGCHR].mem_left -= 1; if (sbreak(total_size) == -1) { incore = FALSE; /* In core strategy failed. */ if (sbreak(AT_LEAST) == -1) fatal("no core at all"); base = BASE; for (mem = mems; mem < &mems[NMEMS]; mem++) { mem->mem_base = base; mem->mem_full = (ind_t)0; mem->mem_left = 0; } } mems[ALLOLCHR].mem_full = 1; mems[ALLOGCHR].mem_full = 1; } /* * Allocate an extra block of `incr' bytes and move all pieces with index * higher than `piece' up with the size of the block. Return whether the * allocate succeeded. */ static bool move_up(piece, incr) register int piece; register ind_t incr; { register struct memory *mem; debug("move_up(%d, %d)\n", piece, (int)incr, 0, 0); if (sbreak(incr) == -1) return FALSE; for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--) copy_up(mem, incr); mems[piece].mem_left += incr; return TRUE; } extern int passnumber; /* * This routine is called if `piece' needs `incr' bytes and the system won't * give them. We first steal the free bytes of all lower pieces and move them * and `piece' down. If that doesn't give us enough bytes, we steal the free * bytes of all higher pieces and move them up. We return whether we have * enough bytes, the first or the second time. */ static bool compact(piece, incr, freeze) register int piece; register ind_t incr; { register ind_t gain, size; register struct memory *mem; #define ALIGN 8 /* minimum alignment for pieces */ #define SHIFT_COUNT 2 /* let pieces only contribute if their free memory is more than 1/2**SHIFT_COUNT * 100 % of its occupied memory */ debug("compact(%d, %d)\n", piece, (int)incr, 0, 0); for (mem = &mems[0]; mem < &mems[NMEMS - 1]; mem++) { assert(mem->mem_base + mem->mem_full + mem->mem_left == (mem+1)->mem_base); } /* * First, check that moving will result in enough space */ if (! freeze) { gain = mems[piece].mem_left & ~(ALIGN - 1); for (mem = &mems[0]; mem <= &mems[NMEMS-1]; mem++) { /* * Don't give it all away! * If this does not give us enough, bad luck */ if (mem == &mems[piece]) continue; size = mem->mem_full >> SHIFT_COUNT; if (mem->mem_left > size) gain += (mem->mem_left - size) & ~(ALIGN - 1); } if (gain < incr) return 0; } gain = 0; for (mem = &mems[0]; mem != &mems[piece]; mem++) { /* Here memory is inserted before a piece. */ assert(passnumber == FIRST || gain == (ind_t)0); copy_down(mem, gain); if (freeze || gain < incr) { if (freeze) size = 0; else size = mem->mem_full >> SHIFT_COUNT; if (mem->mem_left > size) { size = (mem->mem_left - size) & ~(ALIGN - 1); gain += size; mem->mem_left -= size; } } } /* * Now mems[piece]: */ copy_down(mem, gain); gain += mem->mem_left & ~(ALIGN - 1); mem->mem_left &= (ALIGN - 1); if (gain < incr) { register ind_t up = (ind_t)0; for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--) { /* Here memory is appended after a piece. */ if (freeze || gain + up < incr) { if (freeze) size = 0; else size = mem->mem_full >> SHIFT_COUNT; if (mem->mem_left > size) { size = (mem->mem_left - size) & ~(ALIGN - 1); up += size; mem->mem_left -= size; } } copy_up(mem, up); } gain += up; } mems[piece].mem_left += gain; assert(freeze || gain >= incr); for (mem = &mems[0]; mem < &mems[NMEMS - 1]; mem++) { assert(mem->mem_base + mem->mem_full + mem->mem_left == (mem+1)->mem_base); } return gain >= incr; } /* * The bytes of `mem' must be moved `dist' down in the address space. * We copy the bytes from low to high, because the tail of the new area may * overlap with the old area, but we do not want to overwrite them before they * are copied. */ static copy_down(mem, dist) register struct memory *mem; ind_t dist; { register char *old; register char *new; register ind_t size; if (!dist) return; size = mem->mem_full; old = mem->mem_base; new = old - dist; mem->mem_base = new; while (size--) *new++ = *old++; } /* * The bytes of `mem' must be moved `dist' up in the address space. * We copy the bytes from high to low, because the tail of the new area may * overlap with the old area, but we do not want to overwrite them before they * are copied. */ static copy_up(mem, dist) register struct memory *mem; ind_t dist; { register char *old; register char *new; register ind_t size; if (!dist) return; size = mem->mem_full; old = mem->mem_base + size; new = old + dist; while (size--) *--new = *--old; mem->mem_base = new; } /* * Add `size' bytes to the bytes already allocated for `piece'. If it has no * free bytes left, ask them from memory or, if that fails, from the free * bytes of other pieces. The offset of the new area is returned. No matter * how many times the area is moved, because of another allocate, this offset * remains valid. */ ind_t alloc(piece, size) int piece; register long size; { register ind_t incr = 0; ind_t left = mems[piece].mem_left; register ind_t full = mems[piece].mem_full; assert(passnumber == FIRST || (!incore && piece == ALLOMODL)); if (size == (long)0) return full; if (size != (ind_t)size) return BADOFF; while (left + incr < size) incr += INCRSIZE; if (incr == 0 || move_up(piece, incr) || compact(piece, size, 0)) { mems[piece].mem_full += size; mems[piece].mem_left -= size; return full; } else { incore = FALSE; return BADOFF; } } /* * Same as alloc() but for a piece which really needs it. If the first * attempt fails, release the space occupied by other pieces and try again. */ ind_t hard_alloc(piece, size) register int piece; register long size; { register ind_t ret; register int i; if (size != (ind_t)size) return BADOFF; if ((ret = alloc(piece, size)) != BADOFF) return ret; /* * Deallocate what we don't need. */ for (i = 0; i < NMEMS; i++) { switch (i) { case ALLOGLOB: case ALLOGCHR: case ALLOSYMB: case ALLOARCH: case ALLOMODL: break; /* Do not try to deallocate this. */ default: dealloc(i); break; } } free_saved_moduls(); return alloc(piece, size); } /* * We don't need the previous modules, so we put the current module * at the start of the piece allocated for module contents, thereby * overwriting the saved modules, and release its space. */ static free_saved_moduls() { register ind_t size; register char *old, *new; register struct memory *mem = &mems[ALLOMODL]; size = mem->mem_full - core_position; new = mem->mem_base; old = new + core_position; while (size--) *new++ = *old++; mem->mem_full -= core_position; mem->mem_left += core_position; core_position = (ind_t)0; } /* * The piece of memory with index `piece' is no longer needed. * We take care that it can be used by compact() later, if needed. */ dealloc(piece) register int piece; { /* * Some pieces need their memory throughout the program. */ assert(piece != ALLOGLOB); assert(piece != ALLOGCHR); assert(piece != ALLOSYMB); assert(piece != ALLOARCH); mems[piece].mem_left += mems[piece].mem_full; mems[piece].mem_full = (ind_t)0; } char * core_alloc(piece, size) register int piece; register long size; { register ind_t off; if ((off = alloc(piece, size)) == BADOFF) return (char *)0; return address(piece, off); } /* * Reset index into piece of memory for modules and * take care that the allocated pieces will not be moved. */ freeze_core() { register int i; core_position = (ind_t)0; if (incore) return; for (i = 0; i < NMEMS; i++) { switch (i) { case ALLOGLOB: case ALLOGCHR: case ALLOSYMB: case ALLOARCH: break; /* Do not try to deallocate this. */ default: dealloc(i); break; } } compact(NMEMS - 1, (ind_t)0, 1); } /* ------------------------------------------------------------------------- */ /* * To transform the various pieces of the output in core to the file format, * we must order the bytes in the ushorts and longs as ACK prescribes. */ write_bytes() { ushort nsect; long offchar; register struct memory *mem; extern ushort NLocals, NGlobals; extern long NLChars, NGChars; extern int flagword; extern struct outhead outhead; extern struct outsect outsect[]; extern char *outputname; int sectionno = 0; nsect = outhead.oh_nsect; offchar = OFF_CHAR(outhead); /* * We allocated two areas: one for local and one for global names. * Also, we used another kind of on_foff than on file. * At the end of the global area we have put the section names. */ if (!(flagword & SFLAG)) { namecpy((struct outname *)mems[ALLOLOCL].mem_base, NLocals, offchar ); namecpy((struct outname *)mems[ALLOGLOB].mem_base, NGlobals + nsect, offchar + NLChars ); } if (! wr_open(outputname)) { fatal("can't create %s", outputname); } /* * These pieces must always be written. */ wr_ohead(&outhead); wr_sect(outsect, nsect); for (mem = &mems[ALLOEMIT]; mem < &mems[ALLORELO]; mem++) wrt_emit(mem->mem_base, sectionno++, mem->mem_full); /* * The rest depends on the flags. */ if (flagword & RFLAG) wr_relo((struct outrelo *) mems[ALLORELO].mem_base, outhead.oh_nrelo); if (!(flagword & SFLAG)) { wr_name((struct outname *) mems[ALLOLOCL].mem_base, NLocals); wr_name((struct outname *) mems[ALLOGLOB].mem_base, NGlobals+nsect); wr_string(mems[ALLOLCHR].mem_base + 1, (long)NLChars); wr_string(mems[ALLOGCHR].mem_base + 1, (long)NGChars); #ifdef SYMDBUG wr_dbug(mems[ALLODBUG].mem_base, mems[ALLODBUG].mem_full); #endif SYMDBUG } wr_close(); } static namecpy(name, nname, offchar) register struct outname *name; register ushort nname; register long offchar; { while (nname--) { if (name->on_foff) name->on_foff += offchar - 1; name++; } }