/* $Header$ */ /* Language dependant support; this one is for Modula-2 */ #include #include #include #include "position.h" #include "class.h" #include "langdep.h" #include "Lpars.h" #include "idf.h" #include "token.h" #include "expr.h" #include "tree.h" #include "operator.h" extern FILE *db_out, *db_in; extern double atof(); static int print_string(), print_char(), get_number(), get_name(), get_token(), get_string(), print_op(), binop_prio(), unop_prio(), fix_bin_to_pref(); static long array_elsize(); static struct langdep m2 = { 1, "%ld", "%loB", "%lXH", "%lu", "%lXH", "%G", "[", "]", "(", ")", "{", "}", print_string, print_char, array_elsize, binop_prio, unop_prio, get_string, get_name, get_number, get_token, print_op, fix_bin_to_pref }; struct langdep *m2_dep = &m2; static int print_char(c) int c; { fprintf(db_out, (c >= 040 && c < 0177) ? "'%c'" : "%oC", c); } static int print_string(s, len) char *s; int len; { register char *str = s; int delim = '\''; while (*str) { if (*str++ == '\'') delim = '"'; } fprintf(db_out, "%c%.*s%c", delim, len, s, delim); } extern long int_size; static long array_elsize(size) long size; { if (! (int_size % size)) return size; if (! (size % int_size)) return size; return ((size + int_size - 1) / int_size) * int_size; } static int unop_prio(op) int op; { switch(op) { case E_NOT: return 5; case E_MIN: case E_PLUS: return 3; case E_SELECT: return 9; } return 1; } static int binop_prio(op) int op; { switch(op) { case E_AND: case E_MUL: case E_DIV: case E_MOD: return 4; case E_PLUS: case E_MIN: case E_OR: return 3; case E_IN: case E_EQUAL: case E_NOTEQUAL: case E_LTEQUAL: case E_GTEQUAL: case E_LT: case E_GT: return 2; } return 1; } static int get_number(ch) register int ch; { /* The problem arising with the "parsing" of a number is that we don't know the base in advance so we have to read the number with the help of a rather complex finite automaton. */ enum statetp {Oct,Hex,Dec,OctEndOrHex,End,Real}; register enum statetp state; char buf[512+1]; register int base = 10; register char *np = &buf[0]; *np++ = ch; state = is_oct(ch) ? Oct : Dec; ch = getc(db_in); for (;;) { switch(state) { case Oct: while (is_oct(ch)) { if (np < &buf[512]) *np++ = ch; ch = getc(db_in); } if (ch == 'B' || ch == 'C') { state = OctEndOrHex; break; } /* Fall Through */ case Dec: base = 10; while (is_dig(ch)) { if (np < &buf[512]) { *np++ = ch; } ch = getc(db_in); } if (is_hex(ch)) state = Hex; else if (ch == '.') state = Real; else { state = End; if (ch == 'H') base = 16; else ungetc(ch, db_in); } break; case Hex: while (is_hex(ch)) { if (np < &buf[512]) *np++ = ch; ch = getc(db_in); } base = 16; state = End; if (ch != 'H') { error("H expected after hex number"); ungetc(ch, db_in); } break; case OctEndOrHex: if (np < &buf[512]) *np++ = ch; ch = getc(db_in); if (ch == 'H') { base = 16; state = End; break; } if (is_hex(ch)) { state = Hex; break; } ungetc(ch, db_in); ch = *--np; *np++ = '\0'; /* Fall through */ case End: *np = '\0'; if (np >= &buf[512]) { tok.ival = 1; error("constant too long"); } else { np = &buf[0]; while (*np == '0') np++; tok.ival = 0; while (*np) { int c; if (is_dig(*np)) { c = *np++ - '0'; } else { c = *np++ - 'A' + 10; } tok.ival *= base; tok.ival += c; } } return INTEGER; } if (state == Real) break; } /* a real real constant */ if (np < &buf[512]) *np++ = '.'; ch = getc(db_in); while (is_dig(ch)) { /* Fractional part */ if (np < &buf[512]) *np++ = ch; ch = getc(db_in); } if (ch == 'E') { /* Scale factor */ if (np < &buf[512]) *np++ = ch; ch = getc(db_in); if (ch == '+' || ch == '-') { /* Signed scalefactor */ if (np < &buf[512]) *np++ = ch; ch = getc(db_in); } if (is_dig(ch)) { do { if (np < &buf[512]) *np++ = ch; ch = getc(db_in); } while (is_dig(ch)); } else { error("bad scale factor"); } } *np++ = '\0'; ungetc(ch, db_in); if (np >= &buf[512]) { tok.fval = 0.0; error("real constant too long"); } else tok.fval = atof(buf); return REAL; } static int get_name(c) register int c; { char buf[512+1]; register char *p = &buf[0]; register struct idf *id; do { if (p - buf < 512) *p++ = c; c = getc(db_in); } while (in_idf(c)); ungetc(c, db_in); *p = 0; /* now recognize AND, DIV, IN, MOD, NOT, OR */ switch(buf[0]) { case 'A': if (strcmp(buf, "AND") == 0) { tok.ival = E_AND; return BIN_OP; } break; case 'D': if (strcmp(buf, "DIV") == 0) { tok.ival = E_DIV; return BIN_OP; } break; case 'I': if (strcmp(buf, "IN") == 0) { tok.ival = E_IN; return BIN_OP; } break; case 'M': if (strcmp(buf, "MOD") == 0) { tok.ival = E_MOD; return BIN_OP; } break; case 'N': if (strcmp(buf, "NOT") == 0) { tok.ival = E_NOT; return PREF_OP; } break; case 'O': if (strcmp(buf, "OR") == 0) { tok.ival = E_OR; return BIN_OP; } break; } id = str2idf(buf, 1); tok.idf = id; tok.str = id->id_text; return id->id_reserved ? id->id_reserved : NAME; } static int get_token(c) register int c; { switch(c) { case '(': case ')': case '[': case ']': case '`': case '{': case '}': case ':': case ',': return c; case '.': tok.ival = E_SELECT; return SEL_OP; case '+': tok.ival = E_PLUS; return PREF_OR_BIN_OP; case '-': tok.ival = E_MIN; return PREF_OR_BIN_OP; case '*': tok.ival = E_MUL; return BIN_OP; case '/': tok.ival = E_DIV; return BIN_OP; case '&': tok.ival = E_AND; return BIN_OP; case '|': tok.ival = E_OR; return BIN_OP; case '=': tok.ival = E_EQUAL; return BIN_OP; case '#': tok.ival = E_NOTEQUAL; return BIN_OP; case '<': c = getc(db_in); if (c == '>') { tok.ival = E_NOTEQUAL; return BIN_OP; } if (c == '=') { tok.ival = E_LTEQUAL; return BIN_OP; } ungetc(c, db_in); tok.ival = E_LT; return BIN_OP; case '>': c = getc(db_in); if (c == '=') { tok.ival = E_GTEQUAL; return BIN_OP; } ungetc(c, db_in); tok.ival = E_GT; return BIN_OP; case '^': tok.ival = E_DEREF; return POST_OP; case '~': tok.ival = E_NOT; return PREF_OP; default: error("illegal character 0%o", c); return LLlex(); } } static int get_string(c) int c; { register int ch; char buf[512]; register int len = 0; while (ch = getc(db_in), ch != c) { if (ch == '\n') { error("newline in string"); break; } buf[len++] = ch; } buf[len++] = 0; tok.str = Salloc(buf, (unsigned) len); return STRING; } static int print_op(p) p_tree p; { switch(p->t_oper) { case OP_UNOP: switch(p->t_whichoper) { case E_MIN: fputs("-", db_out); print_node(p->t_args[0], 0); break; case E_PLUS: fputs("+", db_out); print_node(p->t_args[0], 0); break; case E_NOT: fputs("~", db_out); print_node(p->t_args[0], 0); break; case E_DEREF: print_node(p->t_args[0], 0); fputs("^", db_out); break; } break; case OP_BINOP: if (p->t_whichoper == E_ARRAY) { print_node(p->t_args[0], 0); fputs("[", db_out); print_node(p->t_args[1], 0); fputs("]", db_out); break; } if (p->t_whichoper == E_SELECT) { print_node(p->t_args[0], 0); fputs(".", db_out); print_node(p->t_args[1], 0); break; } fputs("(", db_out); print_node(p->t_args[0], 0); switch(p->t_whichoper) { case E_AND: fputs("&", db_out); break; case E_OR: fputs("|", db_out); break; case E_DIV: fputs("/", db_out); break; case E_MOD: fputs(" MOD ", db_out); break; case E_IN: fputs(" IN ", db_out); break; case E_PLUS: fputs("+", db_out); break; case E_MIN: fputs("-", db_out); break; case E_MUL: fputs("*", db_out); break; case E_EQUAL: fputs("=", db_out); break; case E_NOTEQUAL: fputs("#", db_out); break; case E_LTEQUAL: fputs("<=", db_out); break; case E_GTEQUAL: fputs(">=", db_out); break; case E_LT: fputs("<", db_out); break; case E_GT: fputs(">", db_out); break; } print_node(p->t_args[1], 0); fputs(")", db_out); break; } } static int fix_bin_to_pref() { /* No problems of this kind in Modula-2 */ }