/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". */ #ifndef lint static char rcsid[] = "$Id$"; #endif #include #include #include #include #include #include "out.h" #include "const.h" #include "debug.h" #include "defs.h" #include "orig.h" #include "sym.h" #define UBYTE(x) ((x)&BYTEMASK) static uint16_t read2(char* addr, int type) { unsigned short word0, word1; if (type & RELBR) return (UBYTE(addr[0]) << WIDTH) + UBYTE(addr[1]); else return (UBYTE(addr[1]) << WIDTH) + UBYTE(addr[0]); } static uint32_t read4(char* addr, int type) { unsigned short word0, word1; if (type & RELBR) { word0 = (UBYTE(addr[0]) << WIDTH) + UBYTE(addr[1]); word1 = (UBYTE(addr[2]) << WIDTH) + UBYTE(addr[3]); } else { word0 = (UBYTE(addr[1]) << WIDTH) + UBYTE(addr[0]); word1 = (UBYTE(addr[3]) << WIDTH) + UBYTE(addr[2]); } if (type & RELWR) return ((long)word0 << (2 * WIDTH)) + word1; else return ((long)word1 << (2 * WIDTH)) + word0; } /* VideoCore 4 fixups are complex as we need to patch the instruction in * one of several different ways (depending on what the instruction is). */ static uint32_t get_vc4_valu(char* addr) { uint16_t opcode = read2(addr, 0); if ((opcode & 0xff00) == 0xe700) { /* ld rd, $+o: [1110 0111 ww 0 d:5] [11111 o:27] * st rd, $+o: [1110 0111 ww 1 d:5] [11111 o:27] */ int32_t value = read4(addr + 2, 0); value &= 0x07ffffff; value = value << 5 >> 5; return value; } if ((opcode & 0xf080) == 0x9000) { /* b $+o*2: [1001 cccc 0ooo oooo] [oooo oooo oooo oooo] * Yes, big-endian (the first 16 bits is the MSB). */ uint32_t value = read4(addr, RELWR); value &= 0x007fffff; value = value << 9 >> 9; value *= 2; return value; } if ((opcode & 0xf080) == 0x9080) { /* bl $+o*2: [1001 oooo 1ooo oooo] [oooo oooo oooo oooo] * Yes, big-endian (the first 16 bits is the MSB). * (Note that o is split.) */ int32_t value = read4(addr, RELWR); int32_t lov = value & 0x007fffff; int32_t hiv = value & 0x0f000000; value = lov | (hiv >> 1); value = value << 5 >> 5; value *= 2; return value; } if ((opcode & 0xffe0) == 0xe500) { /* lea: [1110 0101 000 d:5] [o:32] */ return read4(addr + 2, 0); } assert(0 && "unrecognised VC4 instruction"); } static bool is_powerpc_memory_op(uint32_t opcode) { /* Tests for any PowerPC memory indirection instruction (or * addi) where the payload is a *signed* 16-bit value. */ switch ((opcode & 0xfc000000) >> 26) { case 14: /* addi */ case 34: /* lbz */ case 48: /* lfs */ case 50: /* lfd */ case 42: /* lha */ case 40: /* lhz */ case 32: /* lwz */ case 38: /* stb */ case 52: /* stfs */ case 54: /* stfd */ case 44: /* sth */ case 36: /* stw */ return true; } return false; } /* PowerPC fixups are complex as we need to patch up to the next two * instructions in one of several different ways, depending on what the * instructions area. */ static uint32_t get_powerpc_valu(char* addr, uint16_t type) { uint32_t opcode1 = read4(addr + 0, type); uint32_t opcode2 = read4(addr + 4, type); if ((opcode1 & 0xfc000000) == 0x48000000) { /* branch instruction */ return opcode1 & 0x03fffffd; } else if (((opcode1 & 0xfc1f0000) == 0x3c000000) && ((opcode2 & 0xfc000000) == 0x60000000)) { /* addis / ori instruction pair */ return ((opcode1 & 0xffff) << 16) | (opcode2 & 0xffff); } else if (((opcode1 & 0xfc1f0000) == 0x3c000000) && is_powerpc_memory_op(opcode2)) { /* addis / memoryop instruction pair */ uint16_t hi = opcode1 & 0xffff; uint16_t lo = opcode2 & 0xffff; /* Undo the sign adjustment (see mach/powerpc/as/mach5.c). */ if (lo > 0x7fff) hi--; return ((hi << 16) | lo); } fatal( "Don't know how to read from PowerPC fixup on instructions 0x%08lx+0x%08lx", (unsigned long)opcode1, (unsigned long)opcode2); } /* RELOPPC_LIS stores a signed 26-bit offset in the low bits. */ static uint32_t get_lis_valu(char* addr, uint16_t type) { uint32_t valu = read4(addr, type) & 0x03ffffff; if (valu & 0x02000000) valu |= 0xfc000000; /* sign extension */ return valu; } /* RELOMIPS is used for j and b instructions only. */ static uint32_t get_mips_valu(char* addr) { uint32_t value = read4(addr, 0); switch (value >> 26) { case 2: /* j */ case 3: /* jal */ case 29: /* jalx */ /* Unsigned 26-bit payload. */ value = value & ((1 << 26) - 1); break; default: /* assume everything else is a b, there are lots */ /* Signed 16-bit payload. */ value = ((int32_t)value << 16) >> 16; break; } /* The value has two implicit zero bits on the bottom. */ value <<= 2; return value; } /* * The bits in type indicate how many bytes the value occupies and what * significance should be attributed to each byte. */ static uint32_t getvalu(char* addr, uint16_t type) { switch (type & RELSZ) { case RELO1: return UBYTE(addr[0]); case RELO2: case RELO2HI: case RELO2HISAD: return read2(addr, type); case RELO4: return read4(addr, type); case RELOPPC: return get_powerpc_valu(addr, type); case RELOPPC_LIS: return get_lis_valu(addr, type); case RELOVC4: return get_vc4_valu(addr); case RELOMIPS: return get_mips_valu(addr); default: fatal("can't read relocation type %x", type & RELSZ); } /* NOTREACHED */ } static void write2(uint16_t valu, char* addr, int type) { unsigned short word0, word1; if (type & RELBR) { addr[0] = valu >> WIDTH; addr[1] = valu; } else { addr[0] = valu; addr[1] = valu >> WIDTH; } } static void write4(uint32_t valu, char* addr, int type) { unsigned short word0, word1; if (type & RELWR) { word0 = valu >> (2 * WIDTH); word1 = valu; } else { word0 = valu; word1 = valu >> (2 * WIDTH); } if (type & RELBR) { addr[0] = word0 >> WIDTH; addr[1] = word0; addr[2] = word1 >> WIDTH; addr[3] = word1; } else { addr[0] = word0; addr[1] = word0 >> WIDTH; addr[2] = word1; addr[3] = word1 >> WIDTH; } } /* VideoCore 4 fixups are complex as we need to patch the instruction in * one of several different ways (depending on what the instruction is). */ static void put_vc4_valu(char* addr, uint32_t value) { uint16_t opcode = read2(addr, 0); if ((opcode & 0xff00) == 0xe700) { /* ld rd, o, (pc): [1110 0111 ww 0 d:5] [11111 o:27] * st rd, o, (pc): [1110 0111 ww 1 d:5] [11111 o:27] */ uint32_t v = read4(addr + 2, 0); v &= 0xf8000000; v |= value & 0x07ffffff; write4(v, addr + 2, 0); } else if ((opcode & 0xf080) == 0x9000) { /* b dest: [1001 cccc 0ooo oooo] [oooo oooo oooo oooo] * Yes, big-endian (the first 16 bits is the MSB). */ uint32_t v = read4(addr, RELWR); v &= 0xff800000; v |= (value / 2) & 0x007fffff; write4(v, addr, RELWR); } else if ((opcode & 0xf080) == 0x9080) { /* bl dest: [1001 oooo 1ooo oooo] [oooo oooo oooo oooo] * Yes, big-endian (the first 16 bits is the MSB). * (Note that o is split.) */ uint32_t v = read4(addr, RELWR); uint32_t lovalue = (value / 2) & 0x007fffff; uint32_t hivalue = (value / 2) & 0x07800000; v &= 0xf0800000; v |= lovalue | (hivalue << 1); write4(v, addr, RELWR); } else if ((opcode & 0xffe0) == 0xe500) { /* lea: [1110 0101 000 d:5] [o:32] */ write4(value, addr + 2, 0); } else assert(0 && "unrecognised VC4 instruction"); } /* PowerPC fixups are complex as we need to patch up to the next two * instructions in one of several different ways, depending on what the * instructions area. */ static void put_powerpc_valu(char* addr, uint32_t value, uint16_t type) { uint32_t opcode1 = read4(addr + 0, type); uint32_t opcode2 = read4(addr + 4, type); if ((opcode1 & 0xfc000000) == 0x48000000) { /* branch instruction */ uint32_t i = opcode1 & ~0x03fffffd; i |= value & 0x03fffffd; write4(i, addr, type); } else if (((opcode1 & 0xfc1f0000) == 0x3c000000) && ((opcode2 & 0xfc000000) == 0x60000000)) { /* addis / ori instruction pair */ uint16_t hi = value >> 16; uint16_t lo = value & 0xffff; write4((opcode1 & 0xffff0000) | hi, addr + 0, type); write4((opcode2 & 0xffff0000) | lo, addr + 4, type); } else if (((opcode1 & 0xfc1f0000) == 0x3c000000) && is_powerpc_memory_op(opcode2)) { /* addis / memoryop instruction pair */ uint16_t hi = value >> 16; uint16_t lo = value & 0xffff; /* Apply the sign adjustment (see mach/powerpc/as/mach5.c). */ if (lo > 0x7fff) hi++; write4((opcode1 & 0xffff0000) | hi, addr + 0, type); write4((opcode2 & 0xffff0000) | lo, addr + 4, type); } else fatal( "Don't know how to write a PowerPC fixup to instructions 0x%08lx+0x%08lx", (unsigned long)opcode1, (unsigned long)opcode2); } /* Writes a PowerPC lis instruction. */ static void put_lis_valu(char* addr, uint32_t value, uint16_t type) { uint32_t opcode, reg; uint16_t hi, lo; bool ha16; /* ha16 flag in high bit, register in next 5 bits */ opcode = read4(addr, type); ha16 = opcode >> 31; reg = (opcode >> 26) & 0x1f; /* * Apply the sign adjustment if the ha16 flag is set and the * low half is a negative signed 16-bit integer. */ hi = value >> 16; lo = value & 0xffff; if (ha16 && lo > 0x7fff) hi++; /* Assemble lis reg, hi == addis reg, r0, hi. */ opcode = (15 << 26) | (reg << 21) | (0 << 16) | hi; write4(opcode, addr, type); } /* RELOMIPS is used for j and b instructions only. */ static void put_mips_valu(char* addr, uint32_t value) { uint32_t opcode = read4(addr, 0); /* The two bottom zero bits are implicit. */ if (value & 3) fatal("invalid MIPS relocation value 0x%x", value); value >>= 2; switch (opcode >> 26) { case 2: /* j */ case 3: /* jal */ case 29: /* jalx */ /* Unsigned 26-bit payload. */ value = value & ((1 << 26) - 1); opcode = opcode & ~((1 << 26) - 1); break; default: /* assume everything else is a b, there are lots */ /* Signed 16-bit payload. */ value = value & ((1 << 16) - 1); opcode = opcode & ~((1 << 16) - 1); break; } write4(opcode | value, addr, 0); } /* * The bits in type indicate how many bytes the value occupies and what * significance should be attributed to each byte. * We do not check for overflow. */ static putvalu(uint32_t valu, char* addr, uint16_t type) { switch (type & RELSZ) { case RELO1: addr[0] = valu; break; case RELO2: write2(valu, addr, type); break; case RELO2HI: write2(valu >> 16, addr, type); break; case RELO2HISAD: write2((valu >> 16) + !!(valu & 0x8000), addr, type); break; case RELO4: write4(valu, addr, type); break; case RELOPPC: put_powerpc_valu(addr, valu, type); break; case RELOPPC_LIS: put_lis_valu(addr, valu, type); break; case RELOVC4: put_vc4_valu(addr, valu); break; case RELOMIPS: put_mips_valu(addr, valu); break; default: fatal("can't write relocation type %x", type & RELSZ); } } extern struct outsect outsect[]; extern struct orig relorig[]; /* * There are two cases: `local' is an undefined external or common name, * or `local' is a section name. * First case: if the name has been defined in another module, * its value is known and can be added. Or_nami will be the * index of the name of the section in which this name was * defined. Otherwise we must change or_nami to the index of * this name in the name table of the output file and leave * its value unchanged. * Second case: we must update the value by the change * in position of the section of local. */ static unsigned addrelo(relo, names, valu_out) struct outrelo* relo; struct outname* names; long* valu_out; /* Out variable. */ { register struct outname* local = &names[relo->or_nami]; register unsigned short index = NLocals; register long valu = *valu_out; if ((local->on_type & S_SCT)) { register int sectindex = (local->on_type & S_TYP) - S_MIN; valu += relorig[sectindex].org_size; valu += outsect[sectindex].os_base; index += NGlobals + sectindex; } else { register struct outname* name; extern int hash(); extern struct outname* searchname(); extern unsigned indexof(); extern struct outhead outhead; name = searchname(local->on_mptr, hash(local->on_mptr)); if (name == (struct outname*)0) fatal("name %s not found in pass 2", local->on_mptr); if (ISCOMMON(name) || ISUNDEFINED(name)) { debug("can't relocate from %s\n", local->on_mptr, 0, 0, 0); index += indexof(name); } else { valu += name->on_valu; if ((name->on_type & S_TYP) == S_ABS) { index += NGlobals + outhead.oh_nsect; } else index += NGlobals + (name->on_type & S_TYP) - S_MIN; } } *valu_out = valu; return index; } /* * This routine relocates a value in a section pointed to by `emit', of * which the header is pointed to by `head'. Relocation is relative to the * names in `names'; `relo' tells how to relocate. */ relocate(head, emit, names, relo, off) struct outhead* head; char* emit; struct outname names[]; struct outrelo* relo; long off; { long valu; int sectindex = relo->or_sect - S_MIN; extern struct outhead outhead; uint32_t realaddress = outsect[sectindex].os_base + relo->or_addr + relorig[sectindex].org_size; /* * Pick up previous value at location to be relocated. */ valu = getvalu(emit + (relo->or_addr - off), relo->or_type); debug("read relocation from 0x%08x type 0x%x value 0x%08x symbol %d\n", realaddress, relo->or_type, valu, relo->or_nami); /* * Or_nami is an index in the name table of the considered module. * The name of which it is an index can be: * - an undefined external or a common name * - a section name * - the first name outside! the name table (argh) */ if (relo->or_nami < head->oh_nname) { /* First two cases. */ relo->or_nami = addrelo(relo, names, &valu); } else { /* * Third case: it is absolute. The relocation of absolute * names is always 0. We only need to change the index. */ relo->or_nami = NLocals + NGlobals + outhead.oh_nsect; } /* * If relocation is pc-relative, we had to update the value by * the change in distance between the referencING and referencED * section. We already added the origin of the referencED section; * now we subtract the origin of the referencING section. */ if (relo->or_type & RELPC) valu -= relorig[sectindex].org_size + outsect[sectindex].os_base; /* * Now put the value back. */ debug("written fixed up relocation to 0x%08x type 0x%x value 0x%08x\n", realaddress, relo->or_type, valu, 0); putvalu(valu, emit + (relo->or_addr - off), relo->or_type); /* * We must change the offset within the section of the value to be * relocated to its offset in the new section. `Or_addr' must again be * in the normal part, of course. */ relo->or_addr += relorig[sectindex].org_size; }