/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* D E C L A R A T I O N S */ /* $Header$ */ { #include "debug.h" #include #include #include #include #include "strict3rd.h" #include "idf.h" #include "LLlex.h" #include "def.h" #include "type.h" #include "scope.h" #include "node.h" #include "misc.h" #include "main.h" #include "chk_expr.h" #include "warning.h" #include "nostrict.h" int proclevel = 0; /* nesting level of procedures */ int return_occurred; /* set if a return occurs in a block */ extern t_node *EmptyStatement; #define needs_static_link() (proclevel > 1) } /* inline in declaration: need space * ProcedureDeclaration * { * t_def *df; * } : * { ++proclevel; } * ProcedureHeading(&df, D_PROCEDURE) * ';' block(&(df->prc_body)) * IDENT * { EndProc(df, dot.TOK_IDF); * --proclevel; * } * ; */ ProcedureHeading(t_def **pdf; int type;) { t_type *tp = 0; arith parmaddr = needs_static_link() ? pointer_size : 0; t_param *pr = 0; } : PROCEDURE IDENT { *pdf = DeclProc(type, dot.TOK_IDF); } [ '(' [ FPSection(&pr, &parmaddr) [ ';' FPSection(&pr, &parmaddr) ]* ]? ')' [ ':' qualtype(&tp) ]? ]? { CheckWithDef(*pdf, proc_type(tp, pr, parmaddr)); #ifndef NOSTRICT if (tp && IsConstructed(tp)) { warning(W_STRICT, "procedure \"%s\" has a constructed result type", (*pdf)->df_idf->id_text); } #endif } ; block(t_node **pnd;) : [ %persistent declaration ]* { return_occurred = 0; } [ %default BEGIN StatementSequence(pnd) | { *pnd = EmptyStatement; } ] END ; declaration { t_def *df; } : CONST [ ConstantDeclaration ';' ]* | TYPE [ TypeDeclaration ';' ]* | VAR [ VariableDeclaration ';' ]* | { ++proclevel; } ProcedureHeading(&df, D_PROCEDURE) ';' block(&(df->prc_body)) IDENT { EndProc(df, dot.TOK_IDF); --proclevel; } ';' | ModuleDeclaration ';' ; /* inline in procedureheading: need space * FormalParameters(t_param **ppr; arith *parmaddr; t_type **ptp;): * '(' * [ * FPSection(ppr, parmaddr) * [ * ';' FPSection(ppr, parmaddr) * ]* * ]? * ')' * [ ':' qualtype(ptp) * ]? * ; */ FPSection(t_param **ppr; arith *parmaddr;) { t_node *FPList; t_type *tp; int VARp; } : var(&VARp) IdentList(&FPList) ':' FormalType(&tp) { EnterParamList(ppr, FPList, tp, VARp, parmaddr); } ; FormalType(t_type **ptp;) { extern arith ArrayElSize(); } : ARRAY OF qualtype(ptp) { /* index type of conformant array is "CARDINAL". Recognize a conformant array by size 0. */ register t_type *tp = construct_type(T_ARRAY, card_type); tp->arr_elem = *ptp; *ptp = tp; tp->arr_elsize = ArrayElSize(tp->arr_elem); tp->tp_align = tp->arr_elem->tp_align; } | qualtype(ptp) ; TypeDeclaration { t_def *df; t_type *tp; register t_node *nd; }: IDENT { df = define(dot.TOK_IDF, CurrentScope, D_TYPE); nd = dot2leaf(Name); } '=' type(&tp) { DeclareType(nd, df, tp); FreeNode(nd); } ; type(register t_type **ptp;): %default SimpleType(ptp) | ArrayType(ptp) | RecordType(ptp) | SetType(ptp) | PointerType(ptp) | ProcedureType(ptp) ; SimpleType(register t_type **ptp;) { t_type *tp; } : qualtype(ptp) [ /* nothing */ | SubrangeType(&tp) /* The subrange type is given a base type by the qualident (this is new modula-2). */ { chk_basesubrange(tp, *ptp); *ptp = tp; } ] | enumeration(ptp) | SubrangeType(ptp) ; enumeration(t_type **ptp;) { t_node *EnumList; } : '(' IdentList(&EnumList) ')' { *ptp = enum_type(EnumList); } ; IdentList(t_node **p;) { register t_node *q; } : IDENT { *p = q = dot2leaf(Value); } [ %persistent ',' IDENT { q->nd_left = dot2leaf(Value); q = q->nd_left; } ]* { q->nd_left = 0; } ; SubrangeType(t_type **ptp;) { t_node *nd1, *nd2; }: /* This is not exactly the rule in the new report, but see the rule for "SimpleType". */ '[' ConstExpression(&nd1) UPTO ConstExpression(&nd2) ']' { *ptp = subr_type(nd1, nd2); FreeNode(nd1); FreeNode(nd2); } ; ArrayType(t_type **ptp;) { t_type *tp; register t_type *tp2; } : ARRAY SimpleType(&tp) { *ptp = tp2 = construct_type(T_ARRAY, tp); } [ ',' SimpleType(&tp) { tp2->arr_elem = construct_type(T_ARRAY, tp); tp2 = tp2->arr_elem; } ]* OF type(&tp) { tp2->arr_elem = tp; ArraySizes(*ptp); } ; RecordType(t_type **ptp;) { register t_scope *scope; arith size = 0; int xalign = struct_align; } : RECORD { scope = open_and_close_scope(OPENSCOPE); } FieldListSequence(scope, &size, &xalign) { if (size == 0) { warning(W_ORDINARY, "empty record declaration"); size = 1; } *ptp = standard_type(T_RECORD, xalign, size); (*ptp)->rec_scope = scope; } END ; FieldListSequence(t_scope *scope; arith *cnt; int *palign;): FieldList(scope, cnt, palign) [ ';' FieldList(scope, cnt, palign) ]* ; FieldList(t_scope *scope; arith *cnt; int *palign;) { t_node *FldList; t_type *tp; t_node *nd; register t_def *df; arith tcnt, max; } : [ IdentList(&FldList) ':' type(&tp) { *palign = lcm(*palign, tp->tp_align); EnterFieldList(FldList, tp, scope, cnt); } | CASE /* Also accept old fashioned Modula-2 syntax, but give a warning. Sorry for the complicated code. */ [ qualident(&nd) [ ':' qualtype(&tp) /* This is correct, in both kinds of Modula-2, if the first qualident is a single identifier. */ { if (nd->nd_class != Name) { error("illegal variant tag"); } else { df = define(nd->nd_IDF, scope, D_FIELD); *palign = lcm(*palign, tp->tp_align); if (!(tp->tp_fund & T_DISCRETE)) { error("illegal type in variant"); } df->df_type = tp; df->fld_off = align(*cnt, tp->tp_align); *cnt = df->fld_off + tp->tp_size; df->df_flags |= D_QEXPORTED; } FreeNode(nd); } | /* Old fashioned! the first qualident now represents the type */ { #ifndef STRICT_3RD_ED if (! options['3']) warning(W_OLDFASHIONED, "old fashioned Modula-2 syntax; ':' missing"); else #endif error("':' missing"); tp = qualified_type(nd); } ] | ':' qualtype(&tp) /* Aha, third edition. Well done! */ ] { tcnt = *cnt; } OF variant(scope, &tcnt, tp, palign) { max = tcnt; tcnt = *cnt; } [ '|' variant(scope, &tcnt, tp, palign) { if (tcnt > max) max = tcnt; tcnt = *cnt; } ]* [ ELSE FieldListSequence(scope, &tcnt, palign) { if (tcnt > max) max = tcnt; } ]? END { *cnt = max; } ]? ; variant(t_scope *scope; arith *cnt; t_type *tp; int *palign;) { t_node *nd; } : [ CaseLabelList(&tp, &nd) { /* Ignore the cases for the time being. Maybe a checking version will be supplied later ??? */ FreeNode(nd); } ':' FieldListSequence(scope, cnt, palign) ]? /* Changed rule in new modula-2 */ ; CaseLabelList(t_type **ptp; t_node **pnd;): CaseLabels(ptp, pnd) [ { *pnd = dot2node(Link, *pnd, NULLNODE); } ',' CaseLabels(ptp, &((*pnd)->nd_right)) { pnd = &((*pnd)->nd_right); } ]* ; CaseLabels(t_type **ptp; register t_node **pnd;) { register t_node *nd; }: ConstExpression(pnd) { if (*ptp != 0) { ChkCompat(pnd, *ptp, "case label"); } nd = *pnd; if (! (nd->nd_type->tp_fund & T_DISCRETE) || nd->nd_type->tp_size > word_size) { node_error(nd, "illegal type in case label"); } } [ UPTO { *pnd = nd = dot2node(Link,nd,NULLNODE); nd->nd_type = nd->nd_left->nd_type; } ConstExpression(&(*pnd)->nd_right) { if (!ChkCompat(&((*pnd)->nd_right), nd->nd_type, "case label")) { nd->nd_type = error_type; } else if (! chk_bounds(nd->nd_left->nd_INT, nd->nd_right->nd_INT, BaseType(nd->nd_type)->tp_fund)) { node_error(nd, "lower bound exceeds upper bound in case label range"); } } ]? { *ptp = nd->nd_type; } ; SetType(t_type **ptp;) : SET OF SimpleType(ptp) { *ptp = set_type(*ptp); } ; /* In a pointer type definition, the type pointed at does not have to be declared yet, so be careful about identifying type-identifiers */ PointerType(register t_type **ptp;) : { *ptp = construct_type(T_POINTER, NULLTYPE); } POINTER TO [ %if (type_or_forward(ptp)) type(&((*ptp)->tp_next)) | IDENT ] ; qualtype(t_type **ptp;) { t_node *nd; } : qualident(&nd) { *ptp = qualified_type(nd); } ; ProcedureType(t_type **ptp;) : PROCEDURE [ FormalTypeList(ptp) | { *ptp = proc_type((t_type *) 0, (t_param *) 0, (arith) 0); } ] ; FormalTypeList(t_type **ptp;) { t_param *pr = 0; arith parmaddr = 0; } : '(' [ VarFormalType(&pr, &parmaddr) [ ',' VarFormalType(&pr, &parmaddr) ]* ]? ')' [ ':' qualtype(ptp) | { *ptp = 0; } ] { *ptp = proc_type(*ptp, pr, parmaddr); } ; VarFormalType(t_param **ppr; arith *parmaddr;) { t_type *tp; int isvar; } : var(&isvar) FormalType(&tp) { EnterParamList(ppr,NULLNODE,tp,isvar,parmaddr); } ; var(int *VARp;) : [ VAR { *VARp = D_VARPAR; } | /* empty */ { *VARp = D_VALPAR; } ] ; ConstantDeclaration { t_idf *id; t_node *nd; register t_def *df; }: IDENT { id = dot.TOK_IDF; } '=' ConstExpression(&nd) { df = define(id,CurrentScope,D_CONST); df->con_const = nd->nd_token; df->df_type = nd->nd_type; FreeNode(nd); } ; VariableDeclaration { t_node *VarList; register t_node *nd; t_type *tp; } : IdentAddr(&VarList) { nd = VarList; } [ %persistent ',' IdentAddr(&(nd->nd_right)) { nd = nd->nd_right; } ]* ':' type(&tp) { EnterVarList(VarList, tp, proclevel > 0); } ; IdentAddr(t_node **pnd;) { register t_node *nd; } : IDENT { nd = dot2leaf(Name); } [ '[' ConstExpression(&(nd->nd_left)) ']' ]? { *pnd = nd; } ;