/* * PowerPC table for ncg * * David Given created this table. * George Koehler made many changes in years 2016 to 2018. * * This back end provides 4-byte integers, 4-byte floats, and 8-byte * floats. It should provide enough of EM for the ACK's compilers. * - It doesn't provide "mon" (monitor call) nor "lor 2", "str 2" * (heap pointer). Programs should call procedures in libsys to * make system calls or allocate heap memory. * - It generates only a few EM traps: * - EARRAY from aar, lar, sar * - ERANGE from rck * - ECASE from csa, csb * - It uses floating-point registers to move 8-byte values that * aren't floats. This might cause extra FPU context switches in * programs that don't use floating point. * * The EM stack is less than optimal for PowerPC, and incompatible * with the calling conventions of other compilers (like gcc). * - EM and ncg use the stack to pass parameters to procedures. For * PowerPC, this is probably slower than passing them in registers. * - This back end misaligns some 8-byte floats, because EM's stack * has only 4-byte alignment. (This kind of misalignment also * happened in IBM's AIX and Apple's Mac OS, where data structures * had 8-byte floats with only 4-byte alignment.) */ EM_WSIZE = 4 EM_PSIZE = 4 EM_BSIZE = 8 /* two words saved in call frame */ FP_OFFSET = 0 /* Offset of saved FP relative to our FP */ PC_OFFSET = 4 /* Offset of saved PC relative to our FP */ #define COMMENT(n) /* comment {LABEL, n} */ #define nicesize(x) ((x)==1 || (x)==2 || (x)==4 || (x)==8) #define smalls(n) sfit(n, 16) #define smallu(n) ufit(n, 16) /* Finds FRAME_V tokens that overlap myoff, mysize. */ #define fover(myoff, mysize) (%off+%size>(myoff) && %off<((myoff)+(mysize))) /* Checks if we can use {LXFRAME, x}. */ #define nicelx(x) ((x)>=1 && (x)<=0x8000) #define lo(n) ((n) & 0xFFFF) #define hi(n) (((n)>>16) & 0xFFFF) /* Use these for instructions that treat the low half as signed --- his() * includes a modifier to produce the correct value when the low half gets * sign extended. Er, do make sure you load the low half second. */ #define los(n) (lo(n) | (((0-(lo(n)>>15)) & ~0xFFFF))) #define his(n) ((hi(n) + (lo(n)>>15)) & 0xFFFF) PROPERTIES GPR /* general-purpose register */ SPFP /* sp or fp */ REG /* allocatable GPR */ REG3 /* coercion to r3 */ FPR(8) /* floating-point register */ FREG(8) /* allocatable FPR */ FSREG /* allocatable single-precision FPR */ SPR /* special-purpose register */ CR /* condition register */ REGISTERS /* * We use r1 as stack pointer and r2 as frame pointer. * Our assembler has aliases sp -> r1 and fp -> r2. * * We preserve r13 to r31 and f14 to f31 across function * calls to mimic other compilers (like gcc). See * - http://refspecs.linuxbase.org/elf/elfspec_ppc.pdf * - https://github.com/ryanarn/powerabi -> chap3-elf32abi.sgml * - Apple's "32-bit PowerPC Function Calling Conventions" * * When ncg allocates regvars, it seems to start with the last * register in the first class. To encourage ncg to allocate * them from r31 down, we list them in one class as * r13, r14, ..., r31: GPR, REG regvar(reg_any). */ r0, r12 : GPR. sp, fp : GPR, SPFP. r3 : GPR, REG, REG3. r4, r5, r6, r7, r8, r9, r10, r11 : GPR, REG. r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31 : GPR, REG regvar(reg_any). f0 : FPR. f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13 : FPR, FREG. f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31 : FPR, FREG regvar(reg_float). fs1("f1")=f1, fs2("f2")=f2, fs3("f3")=f3, fs4("f4")=f4, fs5("f5")=f5, fs6("f6")=f6, fs7("f7")=f7, fs8("f8")=f8, fs9("f9")=f9, fs10("f10")=f10, fs11("f11")=f11, fs12("f12")=f12, fs13("f13")=f13 : FSREG. /* reglap: reg_float may have subregister of different size */ fs14("f14")=f14, fs15("f15")=f15, fs16("f16")=f16, fs17("f17")=f17, fs18("f18")=f18, fs19("f19")=f19, fs20("f20")=f20, fs21("f21")=f21, fs22("f22")=f22, fs23("f23")=f23, fs24("f24")=f24, fs25("f25")=f25, fs26("f26")=f26, fs27("f27")=f27, fs28("f28")=f28, fs29("f29")=f29, fs30("f30")=f30, fs31("f31")=f31 : FSREG regvar(reg_float). lr, ctr : SPR. cr0 : CR. /* We use cr0, ignore cr1 to cr7. */ /* The stacking rules can't allocate registers. We use these * scratch registers to stack tokens. */ #define RSCRATCH r0 #define FSCRATCH f0 TOKENS /* Primitives */ C /* constant */ = { INT val; } 4 val. LABEL = { ADDR adr; } 4 adr. LABEL_HI = { ADDR adr; } 4 "hi16[" adr "]". LABEL_HA = { ADDR adr; } 4 "ha16[" adr "]". LABEL_LO = { ADDR adr; } 4 "lo16[" adr "]". LOCAL = { INT off; } 4 ">>> BUG IN LOCAL". DLOCAL = { INT off; } 8 ">>> BUG IN DLOCAL". /* Allows us to use regvar() to refer to registers */ REG_EXPR = { REG reg; } 4 reg. FREG_EXPR = { FREG reg; } 8 reg. FSREG_EXPR = { FSREG reg; } 4 reg. /* Constants on the stack */ CONST_N8000 = { INT val; } 4 val. CONST_N7FFF_N0001 = { INT val; } 4 val. CONST_0000_7FFF = { INT val; } 4 val. CONST_8000 = { INT val; } 4 val. CONST_8001_FFFF = { INT val; } 4 val. CONST_HI_ZR = { INT val; } 4 val. CONST_HI_LO = { INT val; } 4 val. /* Expression partial results */ SEX_B = { GPR reg; } 4. /* sign extension */ SEX_H = { GPR reg; } 4. SUM_RIS = { GPR reg; INT offhi; } 4. /* reg + (offhi << 16) */ SUM_RC = { GPR reg; INT off; } 4. /* reg + off */ SUM_RL = { GPR reg; ADDR adr; } 4. /* reg + lo16[adr] */ SUM_RR = { GPR reg1; GPR reg2; } 4. /* reg1 + reg2 */ SUB_CR = { INT val; GPR reg; } 4. /* val - reg */ SUB_RR = { GPR reg1; GPR reg2; } 4. /* reg1 - reg2 */ NEG_R = { GPR reg; } 4. /* -reg */ MUL_RC = { GPR reg; INT val; } 4. /* reg * val */ MUL_RR = { GPR reg1; GPR reg2; } 4. /* reg1 * reg2 */ DIV_RR = { GPR reg1; GPR reg2; } 4. /* reg1 / reg2 signed */ DIV_RR_U = { GPR reg1; GPR reg2; } 4. /* reg1 / reg2 unsigned */ /* Indirect loads and stores */ IND_RC_B = { GPR reg; INT off; } 4 off "(" reg ")". IND_RL_B = { GPR reg; ADDR adr; } 4 "lo16[" adr "](" reg ")". IND_RR_B = { GPR reg1; GPR reg2; } 4. IND_RC_H = { GPR reg; INT off; } 4 off "(" reg ")". IND_RL_H = { GPR reg; ADDR adr; } 4 "lo16[" adr "](" reg ")". IND_RR_H = { GPR reg1; GPR reg2; } 4. IND_RC_H_S = { GPR reg; INT off; } 4 off "(" reg ")". IND_RL_H_S = { GPR reg; ADDR adr; } 4 "lo16[" adr "](" reg ")". IND_RR_H_S = { GPR reg1; GPR reg2; } 4. IND_RC_W = { GPR reg; INT off; } 4 off "(" reg ")". IND_RL_W = { GPR reg; ADDR adr; } 4 "lo16[" adr "](" reg ")". IND_RR_W = { GPR reg1; GPR reg2; } 4. IND_RC_D = { GPR reg; INT off; } 8 off "(" reg ")". IND_RL_D = { GPR reg; ADDR adr; } 8 "lo16[" adr "](" reg ")". IND_RR_D = { GPR reg1; GPR reg2; } 8. /* Local variables in frame */ FRAME_B = { INT level; GPR reg; INT off; INT size; } 4 off "(" reg ")". FRAME_H = { INT level; GPR reg; INT off; INT size; } 4 off "(" reg ")". FRAME_H_S = { INT level; GPR reg; INT off; INT size; } 4 off "(" reg ")". FRAME_W = { INT level; GPR reg; INT off; INT size; } 4 off "(" reg ")". FRAME_D = { INT level; GPR reg; INT off; INT size; } 8 off "(" reg ")". LXFRAME = { INT level; } 4. /* Bitwise logic */ NOT_R = { GPR reg; } 4. /* ~reg */ AND_RIS = { GPR reg; INT valhi; } 4. AND_RC = { GPR reg; INT val; } 4. AND_RR = { GPR reg1; GPR reg2; } 4. ANDC_RR = { GPR reg1; GPR reg2; } 4. /* reg1 & ~reg2 */ OR_RIS = { GPR reg; INT valhi; } 4. OR_RC = { GPR reg; INT val; } 4. OR_RR = { GPR reg1; GPR reg2; } 4. ORC_RR = { GPR reg1; GPR reg2; } 4. /* reg1 | ~reg2 */ XOR_RIS = { GPR reg; INT valhi; } 4. XOR_RC = { GPR reg; INT val; } 4. XOR_RR = { GPR reg1; GPR reg2; } 4. NAND_RR = { GPR reg1; GPR reg2; } 4. /* ~(reg1 & reg2) */ NOR_RR = { GPR reg1; GPR reg2; } 4. /* ~(reg1 | reg2) */ EQV_RR = { GPR reg1; GPR reg2; } 4. /* ~(reg1 ^ reg2) */ /* Comparisons */ COND_RC = { GPR reg; INT val; } 4. COND_RR = { GPR reg1; GPR reg2; } 4. CONDL_RC = { GPR reg; INT val; } 4. CONDL_RR = { GPR reg1; GPR reg2; } 4. COND_FS = { FSREG reg1; FSREG reg2; } 4. COND_FD = { FREG reg1; FREG reg2; } 4. XEQ = { GPR reg; } 4. XNE = { GPR reg; } 4. XGT = { GPR reg; } 4. XGE = { GPR reg; } 4. XLT = { GPR reg; } 4. XLE = { GPR reg; } 4. SETS /* signed 16-bit integer */ CONST2 = CONST_N8000 + CONST_N7FFF_N0001 + CONST_0000_7FFF. /* integer that, when negated, fits signed 16-bit */ CONST2_WHEN_NEG = CONST_N7FFF_N0001 + CONST_0000_7FFF + CONST_8000. /* unsigned 16-bit integer */ UCONST2 = CONST_0000_7FFF + CONST_8000 + CONST_8001_FFFF. /* any constant on stack */ CONST_STACK = CONST_N8000 + CONST_N7FFF_N0001 + CONST_0000_7FFF + CONST_8000 + CONST_8001_FFFF + CONST_HI_ZR + CONST_HI_LO. CONST = C + CONST_STACK. SET_RC_B = IND_RC_B + IND_RL_B + FRAME_B. SET_RC_H = IND_RC_H + IND_RL_H + FRAME_H. SET_RC_H_S = IND_RC_H_S + IND_RL_H_S + FRAME_H_S. SET_RC_W = IND_RC_W + IND_RL_W + FRAME_W. SET_RC_D = IND_RC_D + IND_RL_D + FRAME_D. IND_ALL_B = IND_RC_B + IND_RL_B + IND_RR_B. IND_ALL_H = IND_RC_H + IND_RL_H + IND_RR_H + IND_RC_H_S + IND_RL_H_S + IND_RR_H_S. IND_ALL_W = IND_RC_W + IND_RL_W + IND_RR_W. IND_ALL_D = IND_RC_D + IND_RL_D + IND_RR_D. IND_V = IND_ALL_B + IND_ALL_H + IND_ALL_W + IND_ALL_D. FRAME_V = FRAME_B + FRAME_H + FRAME_H_S + FRAME_W + FRAME_D. /* anything killed by sti (store indirect) */ MEMORY = IND_V + FRAME_V. /* any integer from stack that we can easily move to GPR */ INT_W = SPFP + REG + CONST_STACK + SEX_B + SEX_H + SUM_RIS + SUM_RC + SUM_RL + SUM_RR + SUB_CR + SUB_RR + NEG_R + MUL_RC + MUL_RR + DIV_RR + DIV_RR_U + IND_ALL_B + IND_ALL_H + IND_ALL_W + FRAME_B + FRAME_H + FRAME_H_S + FRAME_W + NOT_R + AND_RIS + AND_RC + AND_RR + ANDC_RR + OR_RIS + OR_RC + OR_RR + ORC_RR + XOR_RIS + XOR_RC + XOR_RR + NAND_RR + NOR_RR + EQV_RR + XEQ + XNE + XGT + XGE + XLT + XLE. FLOAT_D = FREG + IND_ALL_D + FRAME_D. FLOAT_W = FSREG + IND_ALL_W + FRAME_W. INSTRUCTIONS /* We give time as cycles of total latency from Freescale * Semiconductor, MPC7450 RISC Microprocessor Family Reference * Manual, Rev. 5, section 6.6. * * We have only 4-byte alignment for doubles; 8-byte alignment is * optimal. We guess the misalignment penalty by adding 1 cycle to * the cost of loading or storing a double: * lfd lfdu lfdx: 4 -> 5 * stfd stfdu stfdx: 3 -> 4 */ cost(4, 1) /* space, time */ add GPR:wo, GPR:ro, GPR:ro. addX "add." GPR:wo:cc, GPR:ro, GPR:ro. addi GPR:wo, GPR:ro, CONST+LABEL_LO:ro. li GPR:wo, CONST:ro. addis GPR:wo, GPR:ro, CONST+LABEL_HI+LABEL_HA:ro. lis GPR:wo, CONST+LABEL_HI+LABEL_HA:ro. and GPR:wo, GPR:ro, GPR:ro. andc GPR:wo, GPR:ro, GPR:ro. andiX "andi." GPR:wo:cc, GPR:ro, CONST:ro. andisX "andis." GPR:wo:cc, GPR:ro, CONST:ro. b LABEL:ro. bc CONST:ro, CONST:ro, LABEL:ro. bdnz LABEL:ro. beq LABEL:ro. bne LABEL:ro. bgt LABEL:ro. bge LABEL:ro. blt LABEL:ro. ble LABEL:ro. bxx LABEL:ro. /* dummy */ bcctr CONST:ro, CONST:ro, CONST:ro. bctr. bcctrl CONST:ro, CONST:ro, CONST:ro. bctrl. bclr CONST:ro, CONST:ro, CONST:ro. blr. bl LABEL:ro. cmp CR:wo, CONST:ro, GPR:ro, GPR:ro kills :cc. cmpw GPR:ro, GPR:ro kills :cc. cmpi CR:wo, CONST:ro, GPR:ro, CONST:ro kills :cc. cmpwi GPR:ro, CONST:ro kills :cc. cmpl CR:wo, CONST:ro, GPR:ro, GPR:ro kills :cc. cmplw GPR:ro, GPR:ro kills :cc. cmpli CR:wo, CONST:ro, GPR:ro, CONST:ro kills :cc. cmplwi GPR:ro, CONST:ro kills :cc. divw GPR:wo, GPR:ro, GPR:ro cost(4, 23). divwu GPR:wo, GPR:ro, GPR:ro cost(4, 23). eqv GPR:wo, GPR:ro, GPR:ro. extsb GPR:wo, GPR:ro. extsh GPR:wo, GPR:ro. fadd FREG+DLOCAL:wo, FREG:ro, FREG:ro cost(4, 5). fadds FSREG+LOCAL:wo, FSREG:ro, FSREG:ro cost(4, 5). fcmpo CR:wo, FREG:ro, FREG:ro cost(4, 5). fcmpo CR:wo, FSREG:ro, FSREG:ro cost(4, 5). fctiwz FREG:wo, FREG:ro cost(4, 5). fdiv FREG+DLOCAL:wo, FREG:ro, FREG:ro cost(4, 35). fdivs FSREG+LOCAL:wo, FSREG:ro, FSREG:ro cost(4, 21). fmr FPR:wo, FPR:ro cost(4, 5). fmr FSREG:wo, FSREG:ro cost(4, 5). fmul FREG+DLOCAL:wo, FREG:ro, FREG:ro cost(4, 5). fmuls FSREG+LOCAL:wo, FSREG:ro, FSREG:ro cost(4, 5). fneg FREG+DLOCAL:wo, FREG:ro cost(4, 5). fneg FSREG+LOCAL:wo, FSREG:ro cost(4, 5). frsp FSREG+LOCAL:wo, FREG:ro cost(4, 5). fsub FREG+DLOCAL:wo, FREG:ro, FREG:ro cost(4, 5). fsubs FSREG+LOCAL:wo, FSREG:ro, FSREG:ro cost(4, 5). lbz GPR:wo, SET_RC_B:ro cost(4, 3). lbzx GPR:wo, GPR:ro, GPR:ro cost(4, 3). lfd FPR+DLOCAL:wo, SET_RC_D:ro cost(4, 5). lfdu FPR:wo, IND_RC_D:rw cost(4, 5). lfdx FPR:wo, GPR:ro, GPR:ro cost(4, 5). lfs FSREG+LOCAL:wo, SET_RC_W:ro cost(4, 4). lfsu FSREG:wo, IND_RC_W:rw cost(4, 4). lfsx FSREG:wo, GPR:ro, GPR:ro cost(4, 4). lha GPR:wo, SET_RC_H_S:ro cost(4, 3). lhax GPR:wo, GPR:ro, GPR:ro cost(4, 3). lhz GPR:wo, SET_RC_H:ro cost(4, 3). lhzx GPR:wo, GPR:ro, GPR:ro cost(4, 3). lwz GPR+LOCAL:wo, SET_RC_W:ro cost(4, 3). lwzu GPR:wo, IND_RC_W:rw cost(4, 3). lwzx GPR:wo, GPR:ro, GPR:ro cost(4, 3). mfcr GPR:wo cost(4,2). mfspr GPR:wo, SPR:ro cost(4, 3). mtspr SPR:wo, GPR:ro cost(4, 2). mulli GPR:wo, GPR:ro, CONST:ro cost(4, 3). mullw GPR:wo, GPR:ro, GPR:ro cost(4, 4). nand GPR:wo, GPR:ro, GPR:ro. neg GPR:wo, GPR:ro. nor GPR:wo, GPR:ro, GPR:ro. or GPR:wo, GPR:ro, GPR:ro. mr GPR:wo, GPR:ro. orX "or." GPR:wo:cc, GPR:ro, GPR:ro. mrX_readonly "mr." GPR:ro:cc, GPR:ro. orc GPR:wo, GPR:ro, GPR:ro. ori GPR:wo, GPR:ro, CONST+LABEL_LO:ro. oris GPR:wo, GPR:ro, CONST:ro. rlwinm GPR:wo, GPR:ro, CONST:ro, CONST:ro, CONST:ro. extlwi GPR:wo, GPR:ro, CONST:ro, CONST:ro. extrwi GPR:wo, GPR:ro, CONST:ro, CONST:ro. rotlwi GPR+LOCAL:wo, GPR:ro, CONST:ro. rotrwi GPR+LOCAL:wo, GPR:ro, CONST:ro. slwi GPR+LOCAL:wo, GPR:ro, CONST:ro. srwi GPR+LOCAL:wo, GPR:ro, CONST:ro. rlwnm GPR:wo, GPR:ro, GPR:ro, CONST:ro, CONST:ro. rotlw GPR+LOCAL:wo, GPR:ro, GPR:ro. slw GPR+LOCAL:wo, GPR:ro, GPR:ro. sraw GPR+LOCAL:wo, GPR:ro, GPR:ro /* kills xer */ cost(4, 2). srawi GPR+LOCAL:wo, GPR:ro, CONST:ro /* kills xer */ cost(4, 2). srw GPR+LOCAL:wo, GPR:ro, GPR:ro. stb GPR:ro, SET_RC_B:rw cost(4, 3). stbx GPR:ro, GPR:ro, GPR:ro cost(4, 3). stfd FPR:ro, SET_RC_D:rw cost(4, 4). stfdu FPR:ro, IND_RC_D:rw cost(4, 4). stfdx FPR:ro, GPR:ro, GPR:ro cost(4, 4). stfs FSREG:ro, SET_RC_W:rw cost(4, 3). stfsu FSREG:ro, IND_RC_W:rw cost(4, 3). stfsx FSREG:ro, GPR:ro, GPR:ro cost(4, 3). sth GPR:ro, SET_RC_H:rw cost(4, 3). sthx GPR:ro, GPR:ro, GPR:ro cost(4, 3). stw GPR:ro, SET_RC_W:rw cost(4, 3). stwx GPR:ro, GPR:ro, GPR:ro cost(4, 3). stwu GPR:ro, IND_RC_W:rw cost(4, 3). subf GPR:wo, GPR:ro, GPR:ro. subfic GPR:wo, GPR:ro, CONST:ro /* kills xer */. xor GPR:wo, GPR:ro, GPR:ro. xori GPR:wo, GPR:ro, CONST:ro. xoris GPR:wo, GPR:ro, CONST:ro. bug ">>> BUG" LABEL:ro cost(0, 0). comment "!" LABEL:ro cost(0, 0). MOVES from GPR to GPR gen mr %2, %1 from FSREG to FSREG gen fmr %2, %1 from FPR to FPR gen fmr %2, %1 /* Constants */ from CONST smalls(%val) to GPR gen COMMENT("move CONST->GPR smalls") li %2, %1 from CONST lo(%val)==0 to GPR gen COMMENT("move CONST->GPR shifted") lis %2, {C, hi(%1.val)} from CONST to GPR gen COMMENT("move CONST->GPR") lis %2, {C, hi(%1.val)} ori %2, %2, {C, lo(%1.val)} /* Can't use addi %2, %2, {C, los(%1.val)} * because %2 might be R0. */ from LABEL to GPR gen COMMENT("move LABEL->GPR") lis %2, {LABEL_HI, %1.adr} ori %2, %2, {LABEL_LO, %1.adr} from LABEL_HA to GPR gen lis %2, %1 /* Sign extension */ from SEX_B to GPR gen extsb %2, %1.reg from SEX_H to GPR gen extsh %2, %1.reg /* Register + something */ from SUM_RIS to GPR gen addis %2, %1.reg, {C, %1.offhi} from SUM_RC to GPR gen addi %2, %1.reg, {C, %1.off} from SUM_RL to GPR gen addi %2, %1.reg, {LABEL_LO, %1.adr} from SUM_RR to GPR gen add %2, %1.reg1, %1.reg2 /* Other arithmetic */ from SUB_CR to GPR /* val - reg -> subtract reg from val */ gen subfic %2, %1.reg, {C, %1.val} from SUB_RR to GPR /* reg1 - reg2 -> subtract reg2 from reg1 */ gen subf %2, %1.reg2, %1.reg1 from NEG_R to GPR gen neg %2, %1.reg from MUL_RC to GPR gen mulli %2, %1.reg, {C, %1.val} from MUL_RR to GPR gen mullw %2, %1.reg1, %1.reg2 from DIV_RR to GPR gen divw %2, %1.reg1, %1.reg2 from DIV_RR_U to GPR gen divwu %2, %1.reg1, %1.reg2 /* Read byte */ from SET_RC_B to GPR gen lbz %2, %1 from IND_RR_B to GPR gen lbzx %2, %1.reg1, %1.reg2 /* Write byte */ from GPR to SET_RC_B gen stb %1, %2 from GPR to IND_RR_B gen stbx %1, %2.reg1, %2.reg2 /* Read halfword (short) */ from SET_RC_H to GPR gen lhz %2, %1 from IND_RR_H to GPR gen lhzx %2, %1.reg1, %1.reg2 from SET_RC_H_S to GPR gen lha %2, %1 from IND_RR_H_S to GPR gen lhax %2, %1.reg1, %1.reg2 /* Write halfword */ from GPR to SET_RC_H gen sth %1, %2 from GPR to IND_RR_H gen sthx %1, %2.reg1, %2.reg2 /* Read word */ from SET_RC_W to GPR gen lwz %2, %1 from IND_RR_W to GPR gen lwzx %2, %1.reg1, %1.reg2 from SET_RC_W to FSREG gen lfs %2, %1 from IND_RR_W to FSREG gen lfsx %2, %1.reg1, %1.reg2 /* Write word */ from GPR to SET_RC_W gen stw %1, %2 from GPR to IND_RR_W gen stwx %1, %2.reg1, %2.reg2 from FSREG to SET_RC_W gen stfs %1, %2 from FSREG to IND_RR_W gen stfsx %1, %2.reg1, %2.reg2 /* Read double */ from SET_RC_D to FPR gen lfd %2, %1 from IND_RR_D to FPR gen lfdx %2, %1.reg1, %1.reg2 /* Write double */ from FPR to SET_RC_D gen stfd %1, %2 from FPR to IND_RR_D gen stfdx %1, %2.reg1, %2.reg2 /* LXFRAME is a lexical frame from the static chain. We define a move so "uses REG={LXFRAME, $1}" may find a register with the same frame, and not repeat the move. This move can't search for a REG with {LXFRAME, $1-1}, but must always start from fp. The static chain, if it exists, is the argument at fp + EM_BSIZE. */ from LXFRAME %level==1 to REG gen lwz %2, {IND_RC_W, fp, EM_BSIZE} from LXFRAME %level==2 to REG gen lwz %2, {IND_RC_W, fp, EM_BSIZE} /* PowerPC can't add r0 + EM_BSIZE, * so %2 must not be r0. */ lwz %2, {IND_RC_W, %2, EM_BSIZE} from LXFRAME %level==3 to REG gen lwz %2, {IND_RC_W, fp, EM_BSIZE} lwz %2, {IND_RC_W, %2, EM_BSIZE} lwz %2, {IND_RC_W, %2, EM_BSIZE} from LXFRAME %level==4 to REG gen lwz %2, {IND_RC_W, fp, EM_BSIZE} lwz %2, {IND_RC_W, %2, EM_BSIZE} lwz %2, {IND_RC_W, %2, EM_BSIZE} lwz %2, {IND_RC_W, %2, EM_BSIZE} from LXFRAME to REG /* assuming %level in 2 to 0x8000 */ gen li %2, {C, %1.level-1} mtspr ctr, %2 lwz %2, {IND_RC_W, fp, EM_BSIZE} 1: lwz %2, {IND_RC_W, %2, EM_BSIZE} bdnz {LABEL, "1b"} /* Logicals */ from NOT_R to GPR gen nor %2, %1.reg, %1.reg from AND_RIS to GPR gen andisX %2, %1.reg, {C, %1.valhi} from AND_RC to GPR gen andiX %2, %1.reg, {C, %1.val} from AND_RR to GPR gen and %2, %1.reg1, %1.reg2 from ANDC_RR to GPR gen andc %2, %1.reg1, %1.reg2 from OR_RIS to GPR gen oris %2, %1.reg, {C, %1.valhi} from OR_RC to GPR gen ori %2, %1.reg, {C, %1.val} from OR_RR to GPR gen or %2, %1.reg1, %1.reg2 from ORC_RR to GPR gen orc %2, %1.reg1, %1.reg2 from XOR_RIS to GPR gen xoris %2, %1.reg, {C, %1.valhi} from XOR_RC to GPR gen xori %2, %1.reg, {C, %1.val} from XOR_RR to GPR gen xor %2, %1.reg1, %1.reg2 from NAND_RR to GPR gen nand %2, %1.reg1, %1.reg2 from NOR_RR to GPR gen nor %2, %1.reg1, %1.reg2 from EQV_RR to GPR gen eqv %2, %1.reg1, %1.reg2 /* Conditions */ /* Compare values, then copy cr0 to GPR. */ from COND_RC to GPR gen cmpwi %1.reg, {C, %1.val} mfcr %2 from COND_RR to GPR gen cmpw %1.reg1, %1.reg2 mfcr %2 from CONDL_RC to GPR gen cmplwi %1.reg, {C, %1.val} mfcr %2 from CONDL_RR to GPR gen cmplw %1.reg1, %1.reg2 mfcr %2 from COND_FS to GPR gen fcmpo cr0, %1.reg1, %1.reg2 mfcr %2 from COND_FD to GPR gen fcmpo cr0, %1.reg1, %1.reg2 mfcr %2 /* Given a copy of cr0 in %1.reg, extract a condition bit * (lt, gt, eq) and perhaps flip it. */ from XEQ to GPR gen extrwi %2, %1.reg, {C, 1}, {C, 2} from XNE to GPR gen extrwi %2, %1.reg, {C, 1}, {C, 2} xori %2, %2, {C, 1} from XGT to GPR gen extrwi %2, %1.reg, {C, 1}, {C, 1} from XGE to GPR gen extrwi %2, %1.reg, {C, 1}, {C, 0} xori %2, %2, {C, 1} from XLT to GPR gen extrwi %2, %1.reg, {C, 1}, {C, 0} from XLE to GPR gen extrwi %2, %1.reg, {C, 1}, {C, 1} xori %2, %2, {C, 1} /* REG_EXPR exists solely to allow us to use regvar() (which can only be used in an expression) as a register constant. We can then use our moves to GPR or REG to set register variables. This is easier than defining moves to LOCAL, and avoids confusion between GPR and FSREG in LOCAL. */ from INT_W + LXFRAME to REG_EXPR gen move %1, %2.reg from FLOAT_D to FREG_EXPR gen move %1, %2.reg from FLOAT_W to FSREG_EXPR gen move %1, %2.reg TESTS /* Given "mrX %1, %1", ncgg would say, "Instruction destroys * %1, not allowed here". We use mrX_readonly to trick ncgg. */ to test GPR gen mrX_readonly %1, %1 STACKINGRULES from SPFP+REG to STACK gen COMMENT("stack SPFP+REG") stwu %1, {IND_RC_W, sp, 0-4} from INT_W-SPFP-REG to STACK gen COMMENT("stack INT_W-SPFP-REG") move %1, RSCRATCH stwu RSCRATCH, {IND_RC_W, sp, 0-4} from FLOAT_D-FREG to STACK gen COMMENT("stack FLOAT_D-FREG") move %1, FSCRATCH stfdu FSCRATCH, {IND_RC_D, sp, 0-8} from FREG to STACK gen COMMENT("stack FREG") stfdu %1, {IND_RC_D, sp, 0-8} from FSREG to STACK gen COMMENT("stack FSREG") stfsu %1, {IND_RC_W, sp, 0-4} /* * We never stack LOCAL or DLOCAL tokens, because we only use * them for register variables, so ncg pushes the register, * not the token. These rules only prevent an error in ncgg. */ from LOCAL to STACK gen bug {LABEL, "STACKING LOCAL"} from DLOCAL to STACK gen bug {LABEL, "STACKING DLOCAL"} COERCIONS /* The unstacking coercions emit many "addi sp, sp, X" * instructions; the target optimizer (top) will merge them. */ from STACK uses REG gen COMMENT("coerce STACK->REG") lwz %a, {IND_RC_W, sp, 0} addi sp, sp, {C, 4} yields %a from STACK uses FREG gen COMMENT("coerce STACK->FREG") lfd %a, {IND_RC_D, sp, 0} addi sp, sp, {C, 8} yields %a from STACK uses FSREG gen COMMENT("coerce STACK->FSREG") lfs %a, {IND_RC_W, sp, 0} addi sp, sp, {C, 4} yields %a /* "uses REG=%1" may find and reuse a register containing the * same token. For contrast, "uses REG gen move %1, %a" would * pick a different register before doing the move. * * "reusing %1" helps when coercing an INT_W token like * {SUM_RC, r3, 0-4} to REG3, by not stacking the token. */ from INT_W uses reusing %1, REG=%1 yields %a from FLOAT_D uses reusing %1, FREG=%1 yields %a from FLOAT_W uses reusing %1, FSREG=%1 yields %a /* Splitting coercions can't allocate registers. * PowerPC can't add r0 + constant. Use r12. */ from IND_RC_D %off<=0x7FFA yields {IND_RC_W, %1.reg, %1.off+4} {IND_RC_W, %1.reg, %1.off} from IND_RC_D /* Don't move to %1.reg; it might be a regvar. */ gen move {SUM_RC, %1.reg, %1.off}, r12 yields {IND_RC_W, r12, 4} {IND_RC_W, r12, 0} from IND_RR_D gen move {SUM_RR, %1.reg1, %1.reg2}, r12 yields {IND_RC_W, r12, 4} {IND_RC_W, r12, 0} from FRAME_D %off<=0x7FFA yields {FRAME_W, %1.level, %1.reg, %1.off+4, 4} {FRAME_W, %1.level, %1.reg, %1.off, 4} PATTERNS /* Constants */ pat loc $1==(0-0x8000) /* Load constant */ yields {CONST_N8000, $1} pat loc $1>=(0-0x7FFF) && $1<=(0-1) yields {CONST_N7FFF_N0001, $1} pat loc $1>=0 && $1<=0x7FFF yields {CONST_0000_7FFF, $1} pat loc $1==0x8000 yields {CONST_8000, $1} pat loc $1>=0x8001 && $1<=0xFFFF yields {CONST_8001_FFFF, $1} pat loc lo($1)==0 yields {CONST_HI_ZR, $1} pat loc yields {CONST_HI_LO, $1} /* Stack shuffles */ /* The peephole optimizer does: loc $1 ass 4 -> asp $1 * To optimize multiplication, it uses: dup 8 asp 4 */ pat asp $1==4 /* Adjust stack by constant */ with exact INT_W+FLOAT_W /* drop %1 */ with STACK gen addi sp, sp, {C, 4} pat asp smalls($1) with STACK gen addi sp, sp, {C, $1} pat asp lo($1)==0 with STACK gen addi sp, sp, {C, hi($1)} pat asp with STACK gen addis sp, sp, {C, his($1)} addi sp, sp, {C, los($1)} pat ass $1==4 /* Adjust stack by variable */ with REG STACK gen add sp, sp, %1 /* To duplicate a token, we coerce the token into a register, * then duplicate the register. This decreases code size. */ pat dup $1==4 /* Duplicate word on top of stack */ with REG+FSREG yields %1 %1 pat dup $1==8 /* Duplicate double-word */ with REG+FSREG REG+FSREG yields %2 %1 %2 %1 with FREG yields %1 %1 pat dup /* Duplicate other size */ leaving loc $1 dus 4 pat dus $1==4 /* Duplicate variable size */ with REG STACK /* ( a size%1 -- a a ) */ uses REG, REG gen srwi %a, %1, {C, 2} mtspr ctr, %a add %b, sp, %1 1: lwzu %a, {IND_RC_W, %b, 0-4} stwu %a, {IND_RC_W, sp, 0-4} bdnz {LABEL, "1b"} pat exg $1==4 /* Exchange top two words */ with INT_W+FLOAT_W INT_W+FLOAT_W yields %1 %2 pat exg defined($1) /* Exchange other size */ leaving loc $1 cal ".exg" pat exg !defined($1) leaving cal ".exg" /* Type conversions */ pat loc loc ciu /* signed -> unsigned */ leaving loc $1 loc $2 cuu pat loc loc cui /* unsigned -> signed */ leaving loc $1 loc $2 cuu pat loc loc cuu $1<=4 && $2<=4 /* unsigned -> unsigned */ /* nop */ pat loc loc cii $1<=4 && $2<=$1 /* signed -> signed of smaller or same size, * no sign extension */ pat loc loc cii $1==1 && $2<=4 /* sign-extend char */ with REG yields {SEX_B, %1} pat loc loc cii $1==2 && $2<=4 /* sign-extend short */ with REG yields {SEX_H, %1} /* Local variables */ pat lal smalls($1) /* Load address of local */ yields {SUM_RC, fp, $1} pat lal /* Load address of local */ uses REG={SUM_RIS, fp, his($1)} yields {SUM_RC, %a, los($1)} pat lal loi smalls($1) && $2==1 /* Load byte from local */ yields {FRAME_B, 0, fp, $1, 1} /* Load half-word from local and sign-extend */ pat lal loi loc loc cii smalls($1) && $2==2 && $3==2 && $4==4 yields {FRAME_H_S, 0, fp, $1, 1} pat lal loi smalls($1) && $2==2 /* Load half-word from local */ yields {FRAME_H, 0, fp, $1, 1} /* Load word from local */ pat lol inreg($1)==reg_any || inreg($1)==reg_float yields {LOCAL, $1} pat lol smalls($1) yields {FRAME_W, 0, fp, $1, 4} pat lol leaving lal $1 loi 4 pat ldl inreg($1)==reg_float /* Load double-word from local */ yields {DLOCAL, $1} pat ldl smalls($1) && smalls($1+4) /* smalls($1+4) implies FRAME_D %off<=0xFFFA */ yields {FRAME_D, 0, fp, $1, 8} pat ldl leaving lal $1 loi 8 pat lal sti smalls($1) && $2==1 /* Store byte to local */ with REG kills IND_V, FRAME_V %level==0 && fover($1, 1) gen move %1, {FRAME_B, 0, fp, $1, 1} pat lal sti smalls($1) && $2==2 /* Store half-word to local */ with REG kills IND_V, FRAME_V %level==0 && fover($1, 2) gen move %1, {FRAME_H, 0, fp, $1, 2} pat stl inreg($1)==reg_any /* Store word to local */ with exact INT_W /* ncg fails to infer that regvar($1) is dead! */ kills regvar($1) gen move %1, {REG_EXPR, regvar($1)} with STACK gen lwz {LOCAL, $1}, {IND_RC_W, sp, 0} addi sp, sp, {C, 4} pat stl inreg($1)==reg_float with exact FLOAT_W kills regvar_w($1, reg_float) gen move %1, {FSREG_EXPR, regvar_w($1, reg_float)} with STACK gen lfs {LOCAL, $1}, {IND_RC_W, sp, 0} addi sp, sp, {C, 4} pat stl smalls($1) with REG+FSREG kills IND_V, FRAME_V %level==0 && fover($1, 4) gen move %1, {FRAME_W, 0, fp, $1, 4} pat stl leaving lal $1 sti 4 pat sdl inreg($1)==reg_float /* Store double-word to local */ with exact FLOAT_D kills regvar_d($1, reg_float) gen move %1, {FREG_EXPR, regvar_d($1, reg_float)} with STACK gen lfd {DLOCAL, $1}, {IND_RC_D, sp, 0} addi sp, sp, {C, 8} pat sdl smalls($1) && smalls($1+4) with REG REG kills IND_V, FRAME_V %level==0 && fover($1, 8) gen move %1, {FRAME_W, 0, fp, $1, 4} move %2, {FRAME_W, 0, fp, $1+4, 4} with FREG kills IND_V, FRAME_V %level==0 && fover($1, 4) gen move %1, {FRAME_D, 0, fp, $1, 8} pat sdl leaving lal $1 sti 8 pat lil /* Load indirect from local */ leaving lol $1 loi 4 pat sil /* Store indirect to local */ leaving lol $1 sti 4 pat zrl /* Zero local */ leaving loc 0 stl $1 pat inl /* Increment local */ leaving lol $1 loc 1 adi 4 stl $1 pat del /* Decrement local */ leaving lol $1 loc 1 sbi 4 stl $1 /* Local variables of procedures on static chain */ /* lxa (lexical argument base) -> lxl (lexical local base) */ pat lxa adp nicelx($1) leaving lxl $1 adp $2+EM_BSIZE pat lxa lof nicelx($1) leaving lxl $1 lof $2+EM_BSIZE pat lxa ldf nicelx($1) leaving lxl $1 ldf $2+EM_BSIZE pat lxa stf nicelx($1) leaving lxl $1 stf $2+EM_BSIZE pat lxa sdf nicelx($1) leaving lxl $1 stf $2+EM_BSIZE pat lxa nicelx($1) leaving lxl $1 adp EM_BSIZE /* Load locals in statically enclosing procedures */ pat lxl adp loi nicelx($1) && smalls($2) && $3==1 uses REG={LXFRAME, $1} yields {FRAME_B, $1, %a, $2, 1} pat lxl adp loi loc loc cii nicelx($1) && smalls($2) && $3==2 && $4==2 && $5==4 uses REG={LXFRAME, $1} yields {FRAME_H_S, $1, %a, $2, 2} pat lxl adp loi nicelx($1) && smalls($2) && $3==2 uses REG={LXFRAME, $1} yields {FRAME_H, $1, %a, $2, 2} pat lxl lof nicelx($1) && smalls($2) uses REG={LXFRAME, $1} yields {FRAME_W, $1, %a, $2, 4} pat lxl ldf nicelx($1) && smalls($2) && smalls($2+4) uses REG={LXFRAME, $1} /* smalls($2+4) implies FRAME_D %off<=0xFFFA */ yields {FRAME_D, $1, %a, $2, 8} /* Store locals in statically enclosing procedures */ pat lxl adp sti nicelx($1) && smalls($2) && $3==1 with REG kills IND_V, FRAME_V %level==$1 && fover($2, 1) uses REG={LXFRAME, $1} gen move %1, {FRAME_B, $1, %a, $2, 1} pat lxl adp sti nicelx($1) && smalls($2) && $3==2 with REG kills IND_V, FRAME_V %level==$1 && fover($2, 2) uses REG={LXFRAME, $1} gen move %1, {FRAME_H, $1, %a, $2, 2} pat lxl stf nicelx($1) && smalls($2) with REG+FSREG kills IND_V, FRAME_V %level==$1 && fover($2, 4) uses REG={LXFRAME, $1} gen move %1, {FRAME_W, $1, %a, $2, 4} pat lxl sdf nicelx($1) && smalls($2) && smalls($2+4) with REG REG kills IND_V, FRAME_V %level==$1 && fover($2, 8) uses REG={LXFRAME, $1} gen move %1, {FRAME_W, $1, %a, $2, 4} move %2, {FRAME_W, $1, %a, $2+4, 4} with FREG kills IND_V, FRAME_V %level==$1 && fover($2, 8) uses REG={LXFRAME, $1} gen move %1, {FRAME_D, $1, %a, $2, 8} pat lxl nicelx($1) /* Local base on static chain */ uses REG={LXFRAME, $1} yields %a /* Can't yield LXFRAME. */ pat lxl stl nicelx($1) && inreg($2)==reg_any kills regvar($2) gen move {LXFRAME, $1}, {REG_EXPR, regvar($2)} pat lxl $1==0 /* Our local base */ yields fp pat lxa $1==0 /* Our argument base */ yields {SUM_RC, fp, EM_BSIZE} /* Global variables */ pat lpi /* Load address of function */ leaving lae $1 pat lae /* Load address of external */ uses REG={LABEL_HA, $1} yields {SUM_RL, %a, $1} pat loe /* Load word external */ leaving lae $1 loi 4 pat ste /* Store word external */ leaving lae $1 sti 4 pat lde /* Load double-word external */ leaving lae $1 loi 8 pat sde /* Store double-word external */ leaving lae $1 sti 8 pat zre /* Zero external */ leaving loc 0 ste $1 pat ine /* Increment external */ leaving loe $1 inc ste $1 pat dee /* Decrement external */ leaving loe $1 dec ste $1 /* Structures */ pat lof /* Load word offsetted */ leaving adp $1 loi 4 pat ldf /* Load double-word offsetted */ leaving adp $1 loi 8 pat stf /* Store word offsetted */ leaving adp $1 sti 4 pat sdf /* Store double-word offsetted */ leaving adp $1 sti 8 /* Loads and stores */ pat loi $1==1 /* Load byte indirect */ with REG yields {IND_RC_B, %1, 0} with exact SUM_RC yields {IND_RC_B, %1.reg, %1.off} with exact SUM_RL yields {IND_RL_B, %1.reg, %1.adr} with exact SUM_RR yields {IND_RR_B, %1.reg1, %1.reg2} /* Load half-word indirect and sign-extend */ pat loi loc loc cii $1==2 && $2==2 && $3==4 with REG yields {IND_RC_H_S, %1, 0} with exact SUM_RC yields {IND_RC_H_S, %1.reg, %1.off} with exact SUM_RL yields {IND_RL_H_S, %1.reg, %1.adr} with exact SUM_RR yields {IND_RR_H_S, %1.reg1, %1.reg2} pat loi $1==2 /* Load half-word indirect */ with REG yields {IND_RC_H, %1, 0} with exact SUM_RC yields {IND_RC_H, %1.reg, %1.off} with exact SUM_RL yields {IND_RL_H, %1.reg, %1.adr} with exact SUM_RR yields {IND_RR_H, %1.reg1, %1.reg2} pat loi $1==4 /* Load word indirect */ with REG yields {IND_RC_W, %1, 0} with exact SUM_RC yields {IND_RC_W, %1.reg, %1.off} with exact SUM_RL yields {IND_RL_W, %1.reg, %1.adr} with exact SUM_RR yields {IND_RR_W, %1.reg1, %1.reg2} pat loi $1==8 /* Load double-word indirect */ with REG yields {IND_RC_D, %1, 0} with exact SUM_RC yields {IND_RC_D, %1.reg, %1.off} with exact SUM_RL yields {IND_RL_D, %1.reg, %1.adr} with exact SUM_RR yields {IND_RR_D, %1.reg1, %1.reg2} pat loi /* Load arbitrary size */ leaving loc $1 los 4 pat los $1==4 /* Load arbitrary size */ with REG3 STACK kills ALL gen bl {LABEL, ".los4"} pat sti $1==1 /* Store byte indirect */ with REG REG kills MEMORY gen move %2, {IND_RC_B, %1, 0} with SUM_RC REG kills MEMORY gen move %2, {IND_RC_B, %1.reg, %1.off} with SUM_RL REG kills MEMORY gen move %2, {IND_RL_B, %1.reg, %1.adr} with SUM_RR REG kills MEMORY gen move %2, {IND_RR_B, %1.reg1, %1.reg2} pat sti $1==2 /* Store half-word indirect */ with REG REG kills MEMORY gen move %2, {IND_RC_H, %1, 0} with SUM_RC REG kills MEMORY gen move %2, {IND_RC_H, %1.reg, %1.off} with SUM_RL REG kills MEMORY gen move %2, {IND_RL_H, %1.reg, %1.adr} with SUM_RR REG kills MEMORY gen move %2, {IND_RR_H, %1.reg1, %1.reg2} pat sti $1==4 /* Store word indirect */ with REG REG+FSREG kills MEMORY gen move %2, {IND_RC_W, %1, 0} with SUM_RC REG+FSREG kills MEMORY gen move %2, {IND_RC_W, %1.reg, %1.off} with SUM_RL REG+FSREG kills MEMORY gen move %2, {IND_RL_W, %1.reg, %1.adr} with SUM_RR REG+FSREG kills MEMORY gen move %2, {IND_RR_W, %1.reg1, %1.reg2} pat sti $1==8 /* Store double-word indirect */ with REG FREG kills MEMORY gen move %2, {IND_RC_D, %1, 0} with SUM_RC FREG kills MEMORY gen move %2, {IND_RC_D, %1.reg, %1.off} with SUM_RL FREG kills MEMORY gen move %2, {IND_RL_D, %1.reg, %1.adr} with SUM_RR FREG kills MEMORY gen move %2, {IND_RR_D, %1.reg1, %1.reg2} with REG REG REG kills MEMORY gen move %2, {IND_RC_W, %1, 0} move %3, {IND_RC_W, %1, 4} pat sti /* Store arbitrary size */ leaving loc $1 sts 4 pat sts $1==4 /* Store arbitrary size */ with REG3 STACK kills ALL gen bl {LABEL, ".sts4"} /* Arithmetic wrappers */ pat ads $1==4 /* Add var to pointer */ leaving adi $1 pat sbs $1==4 /* Subtract var from pointer */ leaving sbi $1 pat adp /* Add constant to pointer */ leaving loc $1 adi 4 pat adu /* Add unsigned */ leaving adi $1 pat sbu /* Subtract unsigned */ leaving sbi $1 pat inc /* Add 1 */ leaving loc 1 adi 4 pat dec /* Subtract 1 */ leaving loc 1 sbi 4 pat mlu /* Multiply unsigned */ leaving mli $1 pat slu /* Shift left unsigned */ leaving sli $1 /* Word arithmetic */ /* Like most back ends, this one doesn't trap EIOVFL, so it * ignores overflow in signed integers. */ pat adi $1==4 /* Add word (second + top) */ with REG REG yields {SUM_RR, %1, %2} with CONST2 REG yields {SUM_RC, %2, %1.val} with REG CONST2 yields {SUM_RC, %1, %2.val} with CONST_HI_ZR REG yields {SUM_RIS, %2, his(%1.val)} with REG CONST_HI_ZR yields {SUM_RIS, %1, his(%2.val)} with CONST_STACK-CONST2-CONST_HI_ZR REG uses reusing %2, REG={SUM_RIS, %2, his(%1.val)} yields {SUM_RC, %a, los(%1.val)} with REG CONST_STACK-CONST2-CONST_HI_ZR uses reusing %1, REG={SUM_RIS, %1, his(%2.val)} yields {SUM_RC, %a, los(%2.val)} pat sbi $1==4 /* Subtract word (second - top) */ with REG REG uses reusing %1, reusing %2, REG yields {SUB_RR, %2, %1} with CONST2_WHEN_NEG REG yields {SUM_RC, %2, 0-%1.val} with REG CONST2 yields {SUB_CR, %2.val, %1} with CONST_HI_ZR REG yields {SUM_RIS, %2, his(0-%1.val)} with CONST_STACK-CONST2_WHEN_NEG-CONST_HI_ZR REG uses reusing %2, REG={SUM_RIS, %2, his(0-%1.val)} yields {SUM_RC, %a, los(0-%1.val)} pat ngi $1==4 /* Negate word */ with REG yields {NEG_R, %1} pat mli $1==4 /* Multiply word (second * top) */ with CONST2 REG yields {MUL_RC, %2, %1.val} with REG CONST2 yields {MUL_RC, %1, %2.val} with REG REG yields {MUL_RR, %2, %1} pat dvi $1==4 /* Divide word (second / top) */ with REG REG yields {DIV_RR, %2, %1} pat dvu $1==4 /* Divide unsigned word (second / top) */ with REG REG yields {DIV_RR_U, %2, %1} /* To calculate a remainder: a % b = a - (a / b * b) */ pat rmi $1==4 /* Remainder word (second % top) */ with REG REG uses REG={DIV_RR, %2, %1}, REG gen move {MUL_RR, %a, %1}, %b yields {SUB_RR, %2, %b} pat rmu $1==4 /* Remainder unsigned word (second % top) */ with REG REG uses REG={DIV_RR_U, %2, %1}, REG gen move {MUL_RR, %a, %1}, %b yields {SUB_RR, %2, %b} /* Bitwise logic */ /* This back end doesn't know how to combine shifts and * bitwise ops to emit rlwinm, rlwnm, or rlwimi instructions. */ pat and $1==4 /* AND word */ with REG NOT_R yields {ANDC_RR, %1, %2.reg} with NOT_R REG yields {ANDC_RR, %2, %1.reg} with REG REG yields {AND_RR, %1, %2} with REG UCONST2 yields {AND_RC, %1, %2.val} with UCONST2 REG yields {AND_RC, %2, %1.val} with REG CONST_HI_ZR yields {AND_RIS, %1, hi(%2.val)} with CONST_HI_ZR REG yields {AND_RIS, %2, hi(%1.val)} pat and defined($1) /* AND set */ leaving loc $1 cal ".and" pat and !defined($1) leaving cal ".and" pat ior $1==4 /* OR word */ with REG NOT_R yields {ORC_RR, %1, %2.reg} with NOT_R REG yields {ORC_RR, %2, %1.reg} with REG REG yields {OR_RR, %1, %2} with REG UCONST2 yields {OR_RC, %1, %2.val} with UCONST2 REG yields {OR_RC, %2, %1.val} with REG CONST_HI_ZR yields {OR_RIS, %1, hi(%2.val)} with CONST_HI_ZR REG yields {OR_RIS, %2, hi(%1.val)} with REG CONST_STACK-UCONST2-CONST_HI_ZR uses reusing %1, REG={OR_RIS, %1, hi(%2.val)} yields {OR_RC, %1, lo(%2.val)} with CONST_STACK-UCONST2-CONST_HI_ZR REG uses reusing %2, REG={OR_RIS, %2, hi(%1.val)} yields {OR_RC, %2, lo(%1.val)} pat ior defined($1) /* OR set */ leaving loc $1 cal ".ior" /* OR set (variable), used in lang/m2/libm2/LtoUset.e */ pat ior !defined($1) leaving cal ".ior" pat xor $1==4 /* XOR word */ with REG REG yields {XOR_RR, %1, %2} with REG UCONST2 yields {XOR_RC, %1, %2.val} with UCONST2 REG yields {XOR_RC, %2, %1.val} with REG CONST_HI_ZR yields {XOR_RIS, %1, hi(%2.val)} with CONST_HI_ZR REG yields {XOR_RIS, %2, hi(%1.val)} with REG CONST_STACK-UCONST2-CONST_HI_ZR uses reusing %1, REG={XOR_RIS, %1, hi(%2.val)} yields {XOR_RC, %1, lo(%2.val)} with CONST_STACK-UCONST2-CONST_HI_ZR REG uses reusing %2, REG={XOR_RIS, %2, hi(%1.val)} yields {XOR_RC, %2, lo(%1.val)} pat xor defined($1) /* XOR set */ leaving loc $1 cal ".xor" pat xor !defined($1) leaving cal ".xor" pat com $1==4 /* NOT word */ with exact AND_RR yields {NAND_RR, %1.reg1, %1.reg2} with exact OR_RR yields {NOR_RR, %1.reg1, %1.reg2} with exact XOR_RR yields {EQV_RR, %1.reg1, %1.reg2} with REG yields {NOT_R, %1} pat com defined($1) /* NOT set */ leaving loc $1 cal ".com" pat com !defined($1) leaving cal ".com" pat zer $1==4 /* Push zero */ leaving loc 0 pat zer defined($1) /* Create empty set */ leaving loc $1 cal ".zer" /* Shifts and rotations */ pat sli $1==4 /* Shift left (second << top) */ with CONST_STACK REG uses reusing %2, REG gen slwi %a, %2, {C, %1.val & 0x1F} yields %a with REG REG uses reusing %1, reusing %2, REG gen slw %a, %2, %1 yields %a pat sli stl $1==4 && inreg($2)==reg_any with CONST_STACK REG gen slwi {LOCAL, $2}, %2, {C, %1.val & 0x1F} with REG REG gen slw {LOCAL, $2}, %2, %1 pat sri $1==4 /* Shift right signed (second >> top) */ with CONST_STACK REG uses reusing %2, REG gen srawi %a, %2, {C, %1.val & 0x1F} yields %a with REG REG uses reusing %1, reusing %2, REG gen sraw %a, %2, %1 yields %a pat sri stl $1==4 && inreg($2)==reg_any with CONST_STACK REG gen srawi {LOCAL, $2}, %2, {C, %1.val & 0x1F} with REG REG gen sraw {LOCAL, $2}, %2, %1 pat sru $1==4 /* Shift right unsigned (second >> top) */ with CONST_STACK REG uses reusing %2, REG gen srwi %a, %2, {C, %1.val & 0x1F} yields %a with REG REG uses reusing %1, reusing %2, REG gen srw %a, %2, %1 yields %a pat sru stl $1==4 && inreg($2)==reg_any with CONST_STACK REG gen srwi {LOCAL, $2}, %2, {C, %1.val & 0x1F} with REG REG gen srw {LOCAL, $2}, %2, %1 pat rol $1==4 /* Rotate left word */ with CONST_STACK REG uses reusing %2, REG gen rotlwi %a, %2, {C, %1.val & 0x1F} yields %a with REG REG uses reusing %1, reusing %2, REG gen rotlw %a, %2, %1 yields %a pat rol stl $1==4 && inreg($2)==reg_any with CONST_STACK REG gen rotlwi {LOCAL, $2}, %2, {C, %1.val & 0x1F} with REG REG gen rotlw {LOCAL, $2}, %2, %1 /* * ror 4 -> ngi 4, rol 4 * because to rotate right by n bits is to rotate left by * (32 - n), which is to rotate left by -n. PowerPC rotlw * handles -n as (-n & 0x1F). */ pat ror $1==4 /* Rotate right word */ with CONST_STACK REG uses reusing %2, REG gen rotrwi %a, %2, {C, %1.val & 0x1F} yields %a with /* anything */ leaving ngi 4 rol 4 pat ror stl $1==4 && inreg($2)==reg_any with CONST_STACK REG gen rotrwi {LOCAL, $2}, %2, {C, %1.val & 0x1F} with /* anything */ leaving ngi 4 rol 4 stl $2 /* Arrays */ pat aar $1==4 /* Address of array element */ leaving cal ".aar4" pat lar $1==4 /* Load from array */ with STACK kills ALL gen bl {LABEL, ".aar4"} /* pass r3 = size from .aar4 to .los4 */ bl {LABEL, ".los4"} pat lae lar $2==4 && nicesize(rom($1, 3)) leaving lae $1 aar 4 loi rom($1, 3) pat sar $1==4 /* Store to array */ with STACK kills ALL gen bl {LABEL, ".aar4"} /* pass r3 = size from .aar4 to .sts4 */ bl {LABEL, ".sts4"} pat lae sar $2==4 && nicesize(rom($1, 3)) leaving lae $1 aar 4 sti rom($1, 3) /* Sets */ pat set defined($1) /* Create singleton set */ leaving loc $1 cal ".set" /* Create set (variable), used in lang/m2/libm2/LtoUset.e */ pat set !defined($1) leaving cal ".set" pat inn defined($1) /* Test for set bit */ leaving loc $1 cal ".inn" pat inn !defined($1) leaving cal ".inn" /* Boolean resolutions */ pat teq /* top = (top == 0) */ with REG uses reusing %1, REG gen test %1 mfcr %a yields {XEQ, %a} pat tne /* top = (top != 0) */ with REG uses reusing %1, REG gen test %1 mfcr %a yields {XNE, %a} pat tlt /* top = (top < 0) */ with REG uses reusing %1, REG gen test %1 mfcr %a yields {XLT, %a} pat tle /* top = (top <= 0) */ with REG uses reusing %1, REG gen test %1 mfcr %a yields {XLE, %a} pat tgt /* top = (top > 0) */ with REG uses reusing %1, REG gen test %1 mfcr %a yields {XGT, %a} pat tge /* top = (top >= 0) */ with REG uses reusing %1, REG gen test %1 mfcr %a yields {XGE, %a} pat cmi teq $1==4 /* Signed second == top */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} yields {XEQ, %a} with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} yields {XEQ, %a} with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} yields {XEQ, %a} pat cmi tne $1==4 /* Signed second != top */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} yields {XNE, %a} with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} yields {XNE, %a} with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} yields {XNE, %a} pat cmi tgt $1==4 /* Signed second > top */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} yields {XLT, %a} with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} yields {XGT, %a} with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} yields {XGT, %a} pat cmi tge $1==4 /* Signed second >= top */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} yields {XLE, %a} with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} yields {XGE, %a} with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} yields {XGE, %a} pat cmi tlt $1==4 /* Signed second < top */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} yields {XGT, %a} with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} yields {XLT, %a} with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} yields {XLT, %a} pat cmi tle $1==4 /* Signed second <= top */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} yields {XGE, %a} with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} yields {XLE, %a} with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} yields {XLE, %a} pat cmu teq $1==4 /* Unsigned second == top */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} yields {XEQ, %a} with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} yields {XEQ, %a} with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} yields {XEQ, %a} pat cmu tne $1==4 /* Unsigned second != top */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} yields {XNE, %a} with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} yields {XNE, %a} with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} yields {XNE, %a} pat cmu tgt $1==4 /* Unsigned second > top */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} yields {XLT, %a} with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} yields {XGT, %a} with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} yields {XGT, %a} pat cmu tge $1==4 /* Unsigned second >= top */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} yields {XLE, %a} with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} yields {XGE, %a} with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} yields {XGE, %a} pat cmu tlt $1==4 /* Unsigned second < top */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} yields {XGT, %a} with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} yields {XLT, %a} with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} yields {XLT, %a} pat cmu tle $1==4 /* Unsigned second <= top */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} yields {XGE, %a} with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} yields {XLE, %a} with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} yields {XLE, %a} /* Simple branches */ proc zxx example zeq with REG STACK gen test %1 bxx* {LABEL, $1} /* Pop signed int, branch if... */ pat zeq call zxx("beq") /* top == 0 */ pat zne call zxx("bne") /* top != 0 */ pat zgt call zxx("bgt") /* top > 0 */ pat zge call zxx("bge") /* top >= 0 */ pat zlt call zxx("blt") /* top < 0 */ pat zle call zxx("ble") /* top >= 0 */ /* The peephole optimizer rewrites * cmi 4 zeq * as beq, and does same for bne, bgt, and so on. */ proc bxx example beq with REG CONST2 STACK gen cmpwi %1, %2 bxx[2] {LABEL, $1} with CONST2 REG STACK gen cmpwi %2, %1 bxx[1] {LABEL, $1} with REG REG STACK gen cmpw %2, %1 bxx[1] {LABEL, $1} /* Pop two signed ints, branch if... */ pat beq call bxx("beq", "beq") /* second == top */ pat bne call bxx("bne", "bne") /* second != top */ pat bgt call bxx("bgt", "blt") /* second > top */ pat bge call bxx("bge", "ble") /* second >= top */ pat blt call bxx("blt", "bgt") /* second < top */ pat ble call bxx("ble", "bge") /* second >= top */ proc cmu4zxx example cmu zeq with REG CONST2 STACK gen cmplwi %1, %2 bxx[2] {LABEL, $2} with CONST2 REG STACK gen cmplwi %2, %1 bxx[1] {LABEL, $2} with REG REG STACK gen cmplw %2, %1 bxx[1] {LABEL, $2} /* Pop two unsigned ints, branch if... */ pat cmu zeq $1==4 call cmu4zxx("beq", "beq") pat cmu zne $1==4 call cmu4zxx("bne", "bne") pat cmu zgt $1==4 call cmu4zxx("bgt", "blt") pat cmu zge $1==4 call cmu4zxx("bge", "ble") pat cmu zlt $1==4 call cmu4zxx("blt", "bgt") pat cmu zle $1==4 call cmu4zxx("ble", "bge") /* Comparisons */ /* Each comparison extracts the lt and gt bits from cr0. * extlwi %a, %a, 2, 0 * puts lt in the sign bit, so lt yields a negative result, * gt yields positive. * rlwinm %a, %a, 1, 31, 0 * puts gt in the sign bit, to reverse the comparison. */ pat cmi $1==4 /* Signed tristate compare */ with REG CONST2 uses reusing %1, REG={COND_RC, %1, %2.val} gen rlwinm %a, %a, {C, 1}, {C, 31}, {C, 0} yields %a with CONST2 REG uses reusing %2, REG={COND_RC, %2, %1.val} gen extlwi %a, %a, {C, 2}, {C, 0} yields %a with REG REG uses reusing %1, reusing %2, REG={COND_RR, %2, %1} gen extlwi %a, %a, {C, 2}, {C, 0} yields %a pat cmu $1==4 /* Unsigned tristate compare */ with REG UCONST2 uses reusing %1, REG={CONDL_RC, %1, %2.val} gen rlwinm %a, %a, {C, 1}, {C, 31}, {C, 0} yields %a with UCONST2 REG uses reusing %2, REG={CONDL_RC, %2, %1.val} gen extlwi %a, %a, {C, 2}, {C, 0} yields %a with REG REG uses reusing %1, reusing %2, REG={CONDL_RR, %2, %1} gen extlwi %a, %a, {C, 2}, {C, 0} yields %a pat cmp /* Compare pointers */ leaving cmu 4 pat cms $1==4 /* Compare blocks (word sized) */ leaving cmi 4 pat cms defined($1) leaving loc $1 cal ".cms" pat cms !defined($1) leaving cal ".cms" /* Other branching and labelling */ /* During an unconditional jump, if the top element on the * stack has 4 bytes, then we hold it in register r3. */ pat lab topeltsize($1)==4 && !fallthrough($1) kills ALL gen labeldef $1 yields r3 pat lab topeltsize($1)==4 && fallthrough($1) with REG3 STACK kills ALL gen labeldef $1 yields r3 pat lab topeltsize($1)!=4 /* Label without r3 */ with STACK kills ALL gen labeldef $1 pat bra topeltsize($1)==4 /* Branch with r3 */ with REG3 STACK gen b {LABEL, $1} pat bra topeltsize($1)!=4 /* Branch without r3 */ with STACK gen b {LABEL, $1} /* Miscellaneous */ pat cal /* Call procedure */ with STACK kills ALL gen bl {LABEL, $1} pat cai /* Call procedure indirect */ with REG STACK kills ALL gen mtspr ctr, %1 bctrl. pat lfr $1==4 /* Load function result, word */ yields r3 pat lfr $1==8 /* Load function result, double-word */ yields r4 r3 pat ret $1==0 /* Return from procedure */ gen /* Restore saved registers. */ return /* Epilog: restore lr and fp. */ lwz r0, {IND_RC_W, fp, 4} mtspr lr, r0 lwz r0, {IND_RC_W, fp, 0} /* Free our stack frame. */ addi sp, fp, {C, 8} mr fp, r0 blr. /* If "ret" coerces STACK to REG3, then top will delete the * extra "addi sp, sp, 4". */ pat ret $1==4 /* Return from procedure, word */ with REG3 leaving ret 0 pat ret $1==8 /* Return from proc, double-word */ with REG3 INT_W gen move %2, r4 leaving ret 0 with REG3 STACK gen lwz r4, {IND_RC_W, sp, 0} leaving ret 0 /* * These rules for blm/bls are wrong if length is zero. * So are several procedures in libem. */ pat blm /* Block move constant length */ leaving loc $1 bls pat bls /* Block move variable length */ with REG SPFP+REG SPFP+REG /* allows sp as %2, %3 */ /* ( src%3 dst%2 len%1 -- ) */ uses reusing %1, REG, REG, REG gen srwi %a, %1, {C, 2} mtspr ctr, %a addi %b, %3, {C, 0-4} addi %c, %2, {C, 0-4} 1: lwzu %a, {IND_RC_W, %b, 4} stwu %a, {IND_RC_W, %c, 4} bdnz {LABEL, "1b"} pat csa /* Array-lookup switch */ with STACK kills ALL gen b {LABEL, ".csa"} pat csb /* Table-lookup switch */ with STACK kills ALL gen b {LABEL, ".csb"} /* EM specials */ pat fil /* Set current filename */ leaving lae $1 ste "hol0+4" pat lin /* Set current line number */ leaving loc $1 ste "hol0" pat lni /* Increment line number */ leaving ine "hol0" pat lim /* Load EM trap ignore mask */ leaving loe ".ignmask" pat sim /* Store EM trap ignore mask */ leaving ste ".ignmask" pat sig /* Set trap handler, yield old */ leaving loe ".trppc" exg 4 ste ".trppc" pat trp /* Raise EM trap */ with REG3 kills ALL gen bl {LABEL, ".trp"} pat rtt /* Return from trap */ leaving ret 0 pat rck $1==4 /* Range check */ leaving cal ".rck" /* Our caller's local base, "lxl 0 dch", appears in * lang/cem/libcc.ansi/setjmp/setjmp.e, lang/m2/libm2/par_misc.e */ pat lxl dch $1==0 yields {IND_RC_W, fp, FP_OFFSET} pat dch /* Dynamic chain: LB -> caller's LB */ with REG yields {IND_RC_W, %1, FP_OFFSET} pat lpb /* LB -> argument base */ leaving adp EM_BSIZE /* "gto" must preserve the function result for "lfr", so * longjmp() can pass the return value to setjmp(). * - See lang/cem/libcc.ansi/setjmp/setjmp.e * * Must preserve r3 and r4, so no "uses REG". * PowerPC can't add r0 + constant. Use r12. */ pat gto /* longjmp */ with STACK gen move {LABEL, $1}, r12 move {IND_RC_W, r12, 8}, fp move {IND_RC_W, r12, 4}, sp move {IND_RC_W, r12, 0}, r12 mtspr ctr, r12 bctr. pat lor $1==0 /* Load local base */ leaving lxl 0 pat lor $1==1 /* Load stack pointer */ with STACK yields sp /* Next few patterns for "lor 1" appear in * lang/m2/libm2/par_misc.e */ pat lor adp $1==1 && smalls($2) /* sp + constant */ with STACK yields {SUM_RC, sp, $2} /* Subtract stack pointer by doing %1 - (sp - 4) * because sp - 4 would point to %1. */ pat lor sbs loc adu $1==1 && $2==4 && $4==4 with REG STACK uses reusing %1, REG gen subf %a, sp, %1 yields %a leaving loc $3+4 adu 4 pat lor sbs $1==1 && $2==4 with REG STACK uses reusing %1, REG gen subf %a, sp, %1 yields {SUM_RC, %a, 4} pat str $1==0 /* Store local base */ with INT_W gen move %1, fp with STACK gen lwz fp, {IND_RC_W, sp, 0} addi sp, sp, {C, 4} pat str $1==1 /* Store stack pointer */ with INT_W kills ALL gen move %1, sp with STACK kills ALL gen lwz sp, {IND_RC_W, sp, 0} /* Single-precision floating-point */ pat zrf $1==4 /* Push zero */ leaving loe ".fs_00000000" pat adf $1==4 /* Add single */ with FSREG FSREG uses reusing %1, reusing %2, FSREG gen fadds %a, %2, %1 yields %a pat adf stl $1==4 && inreg($2)==reg_float with FSREG FSREG gen fadds {LOCAL, $2}, %2, %1 pat sbf $1==4 /* Subtract single */ with FSREG FSREG uses reusing %1, reusing %2, FSREG gen fsubs %a, %2, %1 yields %a pat sbf stl $1==4 && inreg($2)==reg_float with FSREG FSREG gen fsubs {LOCAL, $2}, %2, %1 pat mlf $1==4 /* Multiply single */ with FSREG FSREG uses reusing %1, reusing %2, FSREG gen fmuls %a, %2, %1 yields %a pat mlf stl $1==4 && inreg($2)==reg_float with FSREG FSREG gen fmuls {LOCAL, $2}, %2, %1 pat dvf $1==4 /* Divide single */ with FSREG FSREG uses reusing %1, reusing %2, FSREG gen fdivs %a, %2, %1 yields %a pat dvf stl $1==4 && inreg($2)==reg_float with FSREG FSREG gen fdivs {LOCAL, $2}, %2, %1 pat ngf $1==4 /* Negate single */ with FSREG uses reusing %1, FSREG gen fneg %a, %1 yields %a pat ngf stl $1==4 && inreg($2)==reg_float with FSREG gen fneg {LOCAL, $2}, %1 /* When a or b is NaN, then a < b, a <= b, a > b, a >= b * should all be false. We can't make them false, because * - EM's _cmf_ is only for ordered comparisons. * - The peephole optimizer assumes (a < b) == !(a >= b). * * We do make a == b false and a != b true, by checking the * eq (equal) bit or un (unordered) bit in cr0. */ pat cmf $1==4 /* Compare single */ with FSREG FSREG uses REG={COND_FS, %2, %1} /* Extract lt, gt, un; put lt in sign bit. */ gen andisX %a, %a, {C, 0xd000} yields %a pat cmf teq $1==4 /* Single second == top */ with FSREG FSREG uses REG={COND_FS, %2, %1} yields {XEQ, %a} pat cmf tne $1==4 /* Single second == top */ with FSREG FSREG uses REG={COND_FS, %2, %1} yields {XNE, %a} pat cmf tgt $1==4 /* Single second > top */ with FSREG FSREG uses REG={COND_FS, %2, %1} yields {XGT, %a} pat cmf tge $1==4 /* Single second >= top */ with FSREG FSREG uses REG={COND_FS, %2, %1} yields {XGE, %a} pat cmf tlt $1==4 /* Single second < top */ with FSREG FSREG uses REG={COND_FS, %2, %1} yields {XLT, %a} pat cmf tle $1==4 /* Single second <= top */ with FSREG FSREG uses REG={COND_FS, %2, %1} yields {XLE, %a} proc cmf4zxx example cmf zeq with FSREG FSREG STACK gen fcmpo cr0, %2, %1 bxx* {LABEL, $2} /* Pop 2 singles, branch if... */ pat cmf zeq $1==4 call cmf4zxx("beq") pat cmf zne $1==4 call cmf4zxx("bne") pat cmf zgt $1==4 call cmf4zxx("bgt") pat cmf zge $1==4 call cmf4zxx("bge") pat cmf zlt $1==4 call cmf4zxx("blt") pat cmf zle $1==4 call cmf4zxx("ble") pat loc loc cff $1==4 && $2==8 /* Convert single to double */ with FSREG yields %1.1 pat loc loc cfi $1==4 && $2==4 /* Single to signed int */ leaving loc 4 loc 8 cff loc 8 loc 4 cfi pat loc loc cfu $1==4 && $2==4 /* Single to unsigned int */ leaving loc 4 loc 8 cff loc 8 loc 4 cfu pat loc loc cif $1==4 && $2==4 /* Signed int to single */ leaving loc 4 loc 8 cif loc 8 loc 4 cff pat loc loc cuf $1==4 && $2==4 /* Unsigned int to single */ leaving loc 4 loc 8 cuf loc 8 loc 4 cff pat fef $1==4 /* Split fraction, exponent */ leaving cal ".fef4" /* Multiply two singles, then split fraction, integer */ pat fif $1==4 leaving cal ".fif4" /* Double-precision floating-point */ pat zrf $1==8 /* Push zero */ leaving lde ".fd_00000000" pat adf $1==8 /* Add double */ with FREG FREG uses reusing %1, reusing %2, FREG gen fadd %a, %2, %1 yields %a pat adf sdl $1==8 && inreg($2)==reg_float with FREG FREG gen fadd {DLOCAL, $2}, %2, %1 pat sbf $1==8 /* Subtract double */ with FREG FREG uses reusing %1, reusing %2, FREG gen fsub %a, %2, %1 yields %a pat sbf sdl $1==8 && inreg($2)==reg_float with FREG FREG gen fsub {DLOCAL, $2}, %2, %1 pat mlf $1==8 /* Multiply double */ with FREG FREG uses reusing %1, reusing %2, FREG gen fmul %a, %2, %1 yields %a pat mlf sdl $1==8 && inreg($2)==reg_float with FREG FREG gen fmul {DLOCAL, $2}, %2, %1 pat dvf $1==8 /* Divide double */ with FREG FREG uses reusing %1, reusing %2, FREG gen fdiv %a, %2, %1 yields %a pat dvf sdl $1==8 && inreg($2)==reg_float with FREG FREG gen fdiv {DLOCAL, $2}, %2, %1 pat ngf $1==8 /* Negate double */ with FREG uses reusing %1, FREG gen fneg %a, %1 yields %a pat ngf sdl $1==8 && inreg($2)==reg_float with FREG gen fneg {DLOCAL, $2}, %1 /* To compare NaN, see comment above pat cmf $1==4 */ pat cmf $1==8 /* Compare double */ with FREG FREG uses REG={COND_FD, %2, %1} /* Extract lt, gt, un; put lt in sign bit. */ gen andisX %a, %a, {C, 0xd000} yields %a pat cmf teq $1==8 /* Double second == top */ with FREG FREG uses REG={COND_FD, %2, %1} yields {XEQ, %a} pat cmf tne $1==8 /* Double second == top */ with FREG FREG uses REG={COND_FD, %2, %1} yields {XNE, %a} pat cmf tgt $1==8 /* Double second > top */ with FREG FREG uses REG={COND_FD, %2, %1} yields {XGT, %a} pat cmf tge $1==8 /* Double second >= top */ with FREG FREG uses REG={COND_FD, %2, %1} yields {XGE, %a} pat cmf tlt $1==8 /* Double second < top */ with FREG FREG uses REG={COND_FD, %2, %1} yields {XLT, %a} pat cmf tle $1==8 /* Double second <= top */ with FREG FREG uses REG={COND_FD, %2, %1} yields {XLE, %a} proc cmf8zxx example cmf zeq with FREG FREG STACK gen fcmpo cr0, %2, %1 bxx* {LABEL, $2} /* Pop 2 doubles, branch if... */ pat cmf zeq $1==8 call cmf8zxx("beq") pat cmf zne $1==8 call cmf8zxx("bne") pat cmf zgt $1==8 call cmf8zxx("bgt") pat cmf zge $1==8 call cmf8zxx("bge") pat cmf zlt $1==8 call cmf8zxx("blt") pat cmf zle $1==8 call cmf8zxx("ble") /* Convert double to single */ /* reg_float pattern must be first, or it goes unused! */ pat loc loc cff stl $1==8 && $2==4 && inreg($4)==reg_float with FREG gen frsp {LOCAL, $4}, %1 pat loc loc cff $1==8 && $2==4 with FREG uses reusing %1, FSREG gen frsp %a, %1 yields %a pat loc loc cfi $1==8 && $2==4 /* Double to signed int */ with FREG STACK uses reusing %1, FREG gen fctiwz %a, %1 stfdu %a, {IND_RC_D, sp, 0-8} addi sp, sp, {C, 4} pat loc loc cfu $1==8 && $2==4 /* Double to unsigned int */ leaving cal ".cfu8" pat loc loc cif $1==4 && $2==8 /* Signed int to double */ leaving cal ".cif8" pat loc loc cuf $1==4 && $2==8 /* Unsigned int to double */ leaving cal ".cuf8" pat fef $1==8 /* Split fraction, exponent */ leaving cal ".fef8" /* Multiply two doubles, then split fraction, integer */ pat fif $1==8 leaving cal ".fif8"