/* * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* $Header$ */ #include #include double yn(n, x) double x; { /* Use y0, y1, and the recurrence relation y(n+1,x) = 2*n*y(n,x)/x - y(n-1, x). According to Hart & Cheney, this is stable for all x, n. Also use: y(-n,x) = (-1)^n * y(n, x) */ int negative = 0; extern double y0(), y1(); double yn1, yn2; register int i; if (x <= 0) { errno = EDOM; return -HUGE; } if (n < 0) { n = -n; negative = (n % 2); } if (n == 0) return y0(x); if (n == 1) return y1(x); yn2 = y0(x); yn1 = y1(x); for (i = 1; i < n; i++) { double tmp = yn1; yn1 = (i*2)*yn1/x - yn2; yn2 = tmp; } if (negative) return -yn1; return yn1; } double jn(n, x) double x; { /* Unfortunately, according to Hart & Cheney, the recurrence j(n+1,x) = 2*n*j(n,x)/x - j(n-1,x) is unstable for increasing n, except when x > n. However, j(n,x)/j(n-1,x) = 2/(2*n-x*x/(2*(n+1)-x*x/( .... (a continued fraction). We can use this to determine KJn and KJn-1, where K is a normalization constant not yet known. This enables us to determine KJn-2, ...., KJ1, KJ0. Now we can use the J0 or J1 approximation to determine K. Use: j(-n, x) = (-1)^n * j(n, x) j(n, -x) = (-1)^n * j(n, x) */ extern double j0(), j1(); if (n < 0) { n = -n; x = -x; } if (n == 0) return j0(x); if (n == 1) return j1(x); if (x > n) { /* in this case, the recurrence relation is stable for increasing n, so we use that. */ double jn2 = j0(x), jn1 = j1(x); register int i; for (i = 1; i < n; i++) { double tmp = jn1; jn1 = (2*i)*jn1/x - jn2; jn2 = tmp; } return jn1; } { /* we first compute j(n,x)/j(n-1,x) */ register int i; double quotient = 0.0; double xsqr = x*x; double jn1, jn2; for (i = 20; /* ??? how many do we need ??? */ i > 0; i--) { quotient = xsqr/(2*(i+n) - quotient); } quotient = x / (2*n - quotient); jn1 = quotient; jn2 = 1.0; for (i = n-1; i > 0; i--) { /* recurrence relation is stable for decreasing n */ double tmp = jn2; jn2 = (2*i)*jn2/x - jn1; jn1 = tmp; } /* So, now we have K*Jn = quotient and K*J0 = jn2. Now it is easy; compute real j0, this gives K = jn2/j0, and this then gives Jn = quotient/K = j0 * quotient / jn2. */ return j0(x)*quotient/jn2; } }