/* * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* $Id$ */ #include #include extern int errno; static double P1(x) double x; { /* P1(x) = P(z*z)/Q(z*z) where z = 8/x, with x >= 8 */ /* Hart & Cheney # 6755 */ static double p[9] = { 0.1000000000000000000000000489e+01, 0.5581663300347182292169450071e+01, 0.1100186625131173123750501118e+02, 0.9727139359130463694593683431e+01, 0.4060011483142278994462590992e+01, 0.7742832212665311906917358099e+00, 0.6021617752811098752098248630e-01, 0.1482350677236405118074646993e-02, 0.6094215148131061431667573909e-05 }; static double q[9] = { 0.9999999999999999999999999999e+00, 0.5579832245659682292169922224e+01, 0.1099168447731617288972771040e+02, 0.9707206835125961446797916892e+01, 0.4042610016540342097334497865e+01, 0.7671965204303836019508430169e+00, 0.5893258668794493100786371406e-01, 0.1393993644981256852404222530e-02, 0.4585597769784750669754696825e-05 }; double zsq = 64.0/(x*x); return POLYNOM8(zsq, p) / POLYNOM8(zsq, q); } static double Q1(x) double x; { /* Q1(x) = z*P(z*z)/Q(z*z) where z = 8/x, x >= 8 */ /* Hart & Cheney # 7157 */ /* Probably typerror in Hart & Cheney; it sais: Q1(x) = x*P(z*z)/Q(z*z) */ static double p[9] = { 0.4687499999999999999999995275e-01, 0.3302394516691663879252493748e+00, 0.8456888491208195767613862428e+00, 0.1008551084218946085420665147e+01, 0.5973407972399900690521296181e+00, 0.1737697433393258207540273097e+00, 0.2303862814819568573893610740e-01, 0.1171224207976250587945594946e-02, 0.1486418220337492918307904804e-04 }; static double q[10] = { 0.9999999999999999999999999999e+00, 0.7049380763213049609070823421e+01, 0.1807129960468949760845562209e+02, 0.2159171174362827330505421695e+02, 0.1283239297740546866114600499e+02, 0.3758349275324260869598403931e+01, 0.5055985453754739528620657666e+00, 0.2665604326323907148063400439e-01, 0.3821140353404633025596424652e-03, 0.3206696590241261037875154062e-06 }; double zsq = 64.0/(x*x); return (8.0/x) * POLYNOM8(zsq, p) / POLYNOM9(zsq, q); } static double smallj1(x) double x; { /* J1(x) = x*P(x*x)/Q(x*x) for x in [0,8] */ /* Hart & Cheney # 6054 */ static double p[10] = { 0.1921176307760798128049021316e+25, -0.2226092031387396254771375773e+24, 0.7894463902082476734673226741e+22, -0.1269424373753606065436561036e+21, 0.1092152214043184787101134641e+19, -0.5454629264396819144157448868e+16, 0.1634659487571284628830445048e+14, -0.2909662785381647825756152444e+11, 0.2853433451054763915026471449e+08, -0.1197705712815379389149134705e+05 }; static double q[10] = { 0.3842352615521596256098041912e+25, 0.3507567066272028105798868716e+23, 0.1611334311633414344007062889e+21, 0.4929612313959850319632645381e+18, 0.1117536965288162684489793105e+16, 0.1969278625584719037168592923e+13, 0.2735606122949877990248154504e+10, 0.2940957355049651347475558106e+07, 0.2274736606126590905134610965e+04, 0.1000000000000000000000000000e+01 }; double xsq = x*x; return x * POLYNOM9(xsq, p) / POLYNOM9(xsq, q); } double j1(x) double x; { /* Use J1(x) = sqrt(2/(pi*x))*(P1(x)*cos(X1)-Q1(x)*sin(X1)) where X1 = x - 3*pi/4 for |x| > 8. Use J1(-x) = -J1(x). Use direct approximation of smallj1 for |x| <= 8. */ extern double sqrt(), sin(), cos(); int negative = x < 0.0; if (negative) x = -x; if (x > 8.0) { double X1 = x - (M_PI - M_PI_4); x = sqrt(M_2_PI/x)*(P1(x)*cos(X1) - Q1(x)*sin(X1)); } else x = smallj1(x); if (negative) return -x; return x; } static double smally1_bar(x) double x; { /* Y1(x) = Y1BAR(x)+(2/pi)*(J1(x)ln(x) - 1/x) Approximation of Y1BAR for 0 <= x <= 8: Y1BAR(x) = x*P(x*x)/Q(x*x) Hart & Cheney # 6449 */ static double p[10] = { -0.5862655424363443992938931700e+24, 0.1570668341992328458208364904e+24, -0.7351681299005467428400402479e+22, 0.1390658785759080111485190942e+21, -0.1339544201526785345938109179e+19, 0.7290257386242270629526344379e+16, -0.2340575603057015935501295099e+14, 0.4411516199185230690878878903e+11, -0.4542128738770213026987060358e+08, 0.1988612563465350530472715888e+05 }; static double q[10] = { 0.2990279721605116022908679994e+25, 0.2780285010357803058127175655e+23, 0.1302687474507355553192845146e+21, 0.4071330372239164349602952937e+18, 0.9446611865086570116528399283e+15, 0.1707657951197456205887347694e+13, 0.2440358986882941823431612517e+10, 0.2708852767034077697963790196e+07, 0.2174361138333330803617969305e+04, 0.1000000000000000000000000000e+01 }; double xsq = x*x; return x * POLYNOM9(xsq, p) / POLYNOM9(xsq, q); } double y1(x) double x; { extern double sqrt(), sin(), cos(), log(); if (x <= 0.0) { errno = EDOM; return -HUGE; } if (x > 8.0) { double X1 = x - (M_PI - M_PI_4); return sqrt(M_2_PI/x) * (P1(x)*sin(X1)+Q1(x)*cos(X1)); } return smally1_bar(x) + M_2_PI*(j1(x)*log(x) - 1/x); }