/* C A S E S T A T E M E N T C O D E G E N E R A T I O N */ /* Generation of case statements is done by first creating a description structure for the statement, build a list of the case-labels, then generating a case description in the code, and generating either CSA or CSB, and then generating code for the cases themselves. */ #include "debug.h" #include #include #include #include #include #include "Lpars.h" #include "type.h" #include "LLlex.h" #include "node.h" #include "desig.h" #include "walk.h" #include "density.h" struct switch_hdr { struct switch_hdr *next; /* in the free list */ label sh_break; /* label of statement after this one */ label sh_default; /* label of ELSE part, or 0 */ int sh_nrofentries; /* number of cases */ struct type *sh_type; /* type of case expression */ arith sh_lowerbd; /* lowest case label */ arith sh_upperbd; /* highest case label */ struct case_entry *sh_entries; /* the cases with their generated labels */ }; /* STATICALLOCDEF "switch_hdr" 5 */ struct case_entry { struct case_entry *next; /* next in list */ label ce_label; /* generated label */ arith ce_value; /* value of case label */ }; /* STATICALLOCDEF "case_entry" 20 */ /* The constant DENSITY determines when CSA and when CSB instructions are generated. Reasonable values are: 2, 3, 4. On machines that have lots of address space and memory, higher values might also be reasonable. On these machines the density of jump tables may be lower. */ #define compact(nr, low, up) (nr != 0 && (up - low) / nr <= DENSITY) CaseCode(nd, exitlabel) struct node *nd; label exitlabel; { /* Check the expression, stack a new case header and fill in the necessary fields. "exitlabel" is the exit-label of the closest enclosing LOOP-statement, or 0. */ register struct switch_hdr *sh = new_switch_hdr(); register struct node *pnode = nd; register struct case_entry *ce; register arith val; label CaseDescrLab; int casecnt = 0; assert(pnode->nd_class == Stat && pnode->nd_symb == CASE); WalkExpr(pnode->nd_left); /* evaluate case expression */ sh->sh_type = pnode->nd_left->nd_type; sh->sh_break = ++text_label; /* Now, create case label list */ while (pnode->nd_right) { pnode = pnode->nd_right; if (pnode->nd_class == Link && pnode->nd_symb == '|') { if (pnode->nd_left) { /* non-empty case */ pnode->nd_lab = ++text_label; casecnt++; if (! AddCases(sh, /* to descriptor */ pnode->nd_left->nd_left, /* of case labels */ pnode->nd_lab /* and code label */ )) { FreeSh(sh); return; } } } else { /* Else part */ sh->sh_default = ++text_label; break; } } if (!casecnt) { /* There were no cases, so we have to check the case-expression here */ if (! (sh->sh_type->tp_fund & T_DISCRETE)) { node_error(nd, "illegal type in CASE-expression"); FreeSh(sh); return; } } /* Now generate code for the switch itself First the part that CSA and CSB descriptions have in common. */ CaseDescrLab = ++data_label; /* the rom must have a label */ C_df_dlb(CaseDescrLab); if (sh->sh_default) C_rom_ilb(sh->sh_default); else C_rom_ucon("0", pointer_size); if (compact(sh->sh_nrofentries, sh->sh_lowerbd, sh->sh_upperbd)) { /* CSA */ C_rom_cst(sh->sh_lowerbd); C_rom_cst(sh->sh_upperbd - sh->sh_lowerbd); ce = sh->sh_entries; for (val = sh->sh_lowerbd; val <= sh->sh_upperbd; val++) { assert(ce); if (val == ce->ce_value) { C_rom_ilb(ce->ce_label); ce = ce->next; } else if (sh->sh_default) C_rom_ilb(sh->sh_default); else C_rom_ucon("0", pointer_size); } C_lae_dlb(CaseDescrLab, (arith)0); /* perform the switch */ C_csa(word_size); } else { /* CSB */ C_rom_cst((arith)sh->sh_nrofentries); for (ce = sh->sh_entries; ce; ce = ce->next) { /* generate the entries: value + prog.label */ C_rom_cst(ce->ce_value); C_rom_ilb(ce->ce_label); } C_lae_dlb(CaseDescrLab, (arith)0); /* perform the switch */ C_csb(word_size); } /* Now generate code for the cases */ pnode = nd; while (pnode->nd_right) { pnode = pnode->nd_right; if (pnode->nd_class == Link && pnode->nd_symb == '|') { if (pnode->nd_left) { C_df_ilb(pnode->nd_lab); WalkNode(pnode->nd_left->nd_right, exitlabel); C_bra(sh->sh_break); } } else { /* Else part */ assert(sh->sh_default != 0); C_df_ilb(sh->sh_default); WalkNode(pnode, exitlabel); break; } } C_df_ilb(sh->sh_break); FreeSh(sh); } FreeSh(sh) register struct switch_hdr *sh; { /* free the allocated switch structure */ register struct case_entry *ce; ce = sh->sh_entries; while (ce) { struct case_entry *tmp = ce->next; free_case_entry(ce); ce = tmp; } free_switch_hdr(sh); } AddCases(sh, node, lbl) struct switch_hdr *sh; register struct node *node; label lbl; { /* Add case labels to the case label list */ register arith v1, v2; if (node->nd_class == Link) { if (node->nd_symb == UPTO) { assert(node->nd_left->nd_class == Value); assert(node->nd_right->nd_class == Value); v2 = node->nd_right->nd_INT; node->nd_type = node->nd_left->nd_type; for (v1 = node->nd_left->nd_INT; v1 <= v2; v1++) { node->nd_INT = v1; if (! AddOneCase(sh, node, lbl)) return 0; } return 1; } assert(node->nd_symb == ','); return AddCases(sh, node->nd_left, lbl) && AddCases(sh, node->nd_right, lbl); } assert(node->nd_class == Value); return AddOneCase(sh, node, lbl); } AddOneCase(sh, node, lbl) register struct switch_hdr *sh; register struct node *node; label lbl; { register struct case_entry *ce = new_case_entry(); register struct case_entry *c1 = sh->sh_entries, *c2 = 0; ce->ce_label = lbl; ce->ce_value = node->nd_INT; if (! TstCompat(sh->sh_type, node->nd_type)) { node_error(node, "type incompatibility in case"); free_case_entry(ce); return 0; } if (sh->sh_entries == 0) { /* first case entry */ ce->next = (struct case_entry *) 0; sh->sh_entries = ce; sh->sh_lowerbd = sh->sh_upperbd = ce->ce_value; sh->sh_nrofentries = 1; } else { /* second etc. case entry find the proper place to put ce into the list */ if (ce->ce_value < sh->sh_lowerbd) { sh->sh_lowerbd = ce->ce_value; } else if (ce->ce_value > sh->sh_upperbd) { sh->sh_upperbd = ce->ce_value; } while (c1 && c1->ce_value < ce->ce_value) { c2 = c1; c1 = c1->next; } /* At this point three cases are possible: 1: c1 != 0 && c2 != 0: insert ce somewhere in the middle 2: c1 != 0 && c2 == 0: insert ce right after the head 3: c1 == 0 && c2 != 0: append ce to last element The case c1 == 0 && c2 == 0 cannot occur, since the list is guaranteed not to be empty. */ if (c1) { if (c1->ce_value == ce->ce_value) { node_error(node, "multiple case entry for value %ld", ce->ce_value); free_case_entry(ce); return 0; } if (c2) { ce->next = c2->next; c2->next = ce; } else { ce->next = sh->sh_entries; sh->sh_entries = ce; } } else { assert(c2); ce->next = (struct case_entry *) 0; c2->next = ce; } (sh->sh_nrofentries)++; } return 1; }