(* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. See the copyright notice in the ACK home directory, in the file "Copyright". *) (*$R-*) IMPLEMENTATION MODULE Mathlib; (* Module: Mathematical functions Author: Ceriel J.H. Jacobs Version: $Header$ *) FROM EM IMPORT FIF, FEF; FROM Traps IMPORT Message; CONST OneRadianInDegrees = 57.295779513082320876798155D; OneDegreeInRadians = 0.017453292519943295769237D; Sqrt2 = 1.41421356237309504880168872420969808D; OneOverSqrt2 = 0.70710678118654752440084436210484904D; (* basic functions *) PROCEDURE pow(x: REAL; i: INTEGER): REAL; BEGIN RETURN SHORT(longpow(LONG(x), i)); END pow; PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL; VAR val: LONGREAL; ri: LONGREAL; BEGIN ri := FLOATD(i); IF x < 0.0D THEN val := longexp(longln(-x) * ri); IF ODD(i) THEN RETURN -val; ELSE RETURN val; END; ELSIF x = 0.0D THEN RETURN 0.0D; ELSE RETURN longexp(longln(x) * ri); END; END longpow; PROCEDURE sqrt(x: REAL): REAL; BEGIN RETURN SHORT(longsqrt(LONG(x))); END sqrt; PROCEDURE longsqrt(x: LONGREAL): LONGREAL; VAR temp: LONGREAL; exp, i: INTEGER; BEGIN IF x <= 0.0D THEN IF x < 0.0D THEN Message("sqrt: negative argument"); HALT END; RETURN 0.0D; END; temp := FEF(x,exp); (* * NOTE * this wont work on 1's comp *) IF ODD(exp) THEN temp := 2.0D * temp; DEC(exp); END; temp := 0.5D*(1.0D + temp); WHILE exp > 28 DO temp := temp * 16384.0D; exp := exp - 28; END; WHILE exp < -28 DO temp := temp / 16384.0D; exp := exp + 28; END; WHILE exp >= 2 DO temp := temp * 2.0D; exp := exp - 2; END; WHILE exp <= -2 DO temp := temp / 2.0D; exp := exp + 2; END; FOR i := 0 TO 5 DO temp := 0.5D*(temp + x/temp); END; RETURN temp; END longsqrt; PROCEDURE exp(x: REAL): REAL; BEGIN RETURN SHORT(longexp(LONG(x))); END exp; PROCEDURE longexp(x: LONGREAL): LONGREAL; (* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] *) (* Hart & Cheney #1069 *) CONST p0 = 0.2080384346694663001443843411D+07; p1 = 0.3028697169744036299076048876D+05; p2 = 0.6061485330061080841615584556D+02; q0 = 0.6002720360238832528230907598D+07; q1 = 0.3277251518082914423057964422D+06; q2 = 0.1749287689093076403844945335D+04; q3 = 0.1000000000000000000000000000D+01; VAR neg: BOOLEAN; xPxx, Qxx: LONGREAL; n: LONGREAL; n1 : INTEGER; xsq : LONGREAL; large: BOOLEAN; BEGIN neg := x < 0.0D; IF neg THEN x := -x; END; x := FIF(x/longln2, 1.0D, n); large := x > 0.5D; IF large THEN x := x - 0.5D; END; xsq := x*x; xPxx := x*((p2*xsq+p1)*xsq+p0); Qxx := ((q3*xsq+q2)*xsq+q1)*xsq+q0; x := (Qxx + xPxx)/(Qxx - xPxx); IF large THEN x := x * Sqrt2; END; n1 := TRUNCD(n + 0.5D); WHILE n1 >= 16 DO x := x * 65536.0D; n1 := n1 - 16; END; WHILE n1 > 0 DO x := x * 2.0D; DEC(n1); END; IF neg THEN RETURN 1.0D/x; END; RETURN x; END longexp; PROCEDURE ln(x: REAL): REAL; (* natural log *) BEGIN RETURN SHORT(longln(LONG(x))); END ln; PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *) (* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)] Hart & Cheney #2707 *) CONST p0 = 0.7504094990777122217455611007D+02; p1 = -0.1345669115050430235318253537D+03; p2 = 0.7413719213248602512779336470D+02; p3 = -0.1277249755012330819984385000D+02; p4 = 0.3327108381087686938144000000D+00; q0 = 0.3752047495388561108727775374D+02; q1 = -0.7979028073715004879439951583D+02; q2 = 0.5616126132118257292058560360D+02; q3 = -0.1450868091858082685362325000D+02; q4 = 0.1000000000000000000000000000D+01; VAR exp: INTEGER; z, zsq: LONGREAL; BEGIN IF x <= 0.0D THEN Message("ln: argument <= 0"); HALT END; x := FEF(x, exp); WHILE x < OneOverSqrt2 DO x := x + x; DEC(exp); END; z := (x - 1.0D) / (x + 1.0D); zsq := z*z; RETURN z * ((((p4*zsq+p3)*zsq+p2)*zsq+p1)*zsq+p0) / ((((q4*zsq+q3)*zsq+q2)*zsq+q1)*zsq+q0) + FLOATD(exp) * longln2; END longln; PROCEDURE log(x: REAL): REAL; (* log with base 10 *) BEGIN RETURN SHORT(longlog(LONG(x))); END log; PROCEDURE longlog(x: LONGREAL): LONGREAL; (* log with base 10 *) BEGIN RETURN longln(x)/longln10; END longlog; (* trigonometric functions; arguments in radians *) PROCEDURE sin(x: REAL): REAL; BEGIN RETURN SHORT(longsin(LONG(x))); END sin; PROCEDURE sinus(x: LONGREAL; quadrant: INTEGER) : LONGREAL; (* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] Hart & Cheney # 3374 *) CONST p0 = 0.4857791909822798473837058825D+10; p1 = -0.1808816670894030772075877725D+10; p2 = 0.1724314784722489597789244188D+09; p3 = -0.6351331748520454245913645971D+07; p4 = 0.1002087631419532326179108883D+06; p5 = -0.5830988897678192576148973679D+03; q0 = 0.3092566379840468199410228418D+10; q1 = 0.1202384907680254190870913060D+09; q2 = 0.2321427631602460953669856368D+07; q3 = 0.2848331644063908832127222835D+05; q4 = 0.2287602116741682420054505174D+03; q5 = 0.1000000000000000000000000000D+01; A1 = 6.2822265625D; A2 = 0.00095874467958647692528676655900576D; VAR xsq, x1, x2, n : LONGREAL; t : INTEGER; BEGIN IF x < 0.0D THEN INC(quadrant, 2); x := -x; END; IF longhalfpi - x = longhalfpi THEN CASE quadrant OF | 0,2: RETURN 0.0D; | 1: RETURN 1.0D; | 3: RETURN -1.0D; END; END; IF x >= longtwicepi THEN IF x <= FLOATD(MAX(LONGINT)) THEN (* Use extended precision to calculate reduced argument. Split 2pi in 2 parts a1 and a2, of which the first only uses some bits of the mantissa, so that n * a1 is exactly representable, where n is the integer part of x/pi. Here we used 12 bits of the mantissa for a1. Also split x in integer part x1 and fraction part x2. We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2. *) n := FLOATD(TRUNCD(x/longtwicepi)); x1 := FLOATD(TRUNCD(x)); x2 := x - x1; x := ((x1 - n * A1) + x2) - n * A2; ELSE x := FIF(x/longtwicepi, 1.0D, x1) * longtwicepi; END END; x := x / longhalfpi; t := TRUNC(x); x := x - FLOATD(t); quadrant := (quadrant + t MOD 4) MOD 4; IF ODD(quadrant) THEN x := 1.0D - x; END; IF quadrant > 1 THEN x := -x; END; xsq := x * x; RETURN x * (((((p5*xsq+p4)*xsq+p3)*xsq+p2)*xsq+p1)*xsq+p0) / (((((q5*xsq+q4)*xsq+q3)*xsq+q2)*xsq+q1)*xsq+q0); END sinus; PROCEDURE longsin(x: LONGREAL): LONGREAL; BEGIN RETURN sinus(x, 0); END longsin; PROCEDURE cos(x: REAL): REAL; BEGIN RETURN SHORT(longcos(LONG(x))); END cos; PROCEDURE longcos(x: LONGREAL): LONGREAL; BEGIN IF x < 0.0D THEN x := -x; END; RETURN sinus(x, 1); END longcos; PROCEDURE tan(x: REAL): REAL; BEGIN RETURN SHORT(longtan(LONG(x))); END tan; PROCEDURE longtan(x: LONGREAL): LONGREAL; VAR cosinus: LONGREAL; BEGIN cosinus := longcos(x); IF cosinus = 0.0D THEN Message("tan: result does not exist"); HALT END; RETURN longsin(x)/cosinus; END longtan; PROCEDURE arcsin(x: REAL): REAL; BEGIN RETURN SHORT(longarcsin(LONG(x))); END arcsin; PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL; VAR negative : BOOLEAN; BEGIN negative := x <= 0.0D; IF negative THEN x := -x; END; IF x > 1.0D THEN Message("arcsin or arccos: argument > 1"); HALT END; IF x = 1.0D THEN x := longhalfpi; ELSE x := longarctan(x/longsqrt(1.0D - x*x)); END; IF negative THEN x := -x; END; IF cosfl THEN RETURN longhalfpi - x; END; RETURN x; END arcsincos; PROCEDURE longarcsin(x: LONGREAL): LONGREAL; BEGIN RETURN arcsincos(x, FALSE); END longarcsin; PROCEDURE arccos(x: REAL): REAL; BEGIN RETURN SHORT(longarccos(LONG(x))); END arccos; PROCEDURE longarccos(x: LONGREAL): LONGREAL; BEGIN RETURN arcsincos(x, TRUE); END longarccos; PROCEDURE arctan(x: REAL): REAL; BEGIN RETURN SHORT(longarctan(LONG(x))); END arctan; TYPE precomputed = RECORD X: LONGREAL; (* partition point *) arctan: LONGREAL; (* arctan of evaluation node *) OneOverXn: LONGREAL; (* 1/xn *) OneOverXnSquarePlusone: LONGREAL; (* ... *) END; VAR arctaninit: BOOLEAN; precomp : ARRAY[0..4] OF precomputed; PROCEDURE longarctan(x: LONGREAL): LONGREAL; (* The interval [0, infinity) is treated as follows: Define partition points Xi X0 = 0 X1 = tan(pi/16) X2 = tan(3pi/16) X3 = tan(5pi/16) X4 = tan(7pi/16) X5 = infinity and evaluation nodes xi x2 = tan(2pi/16) x3 = tan(4pi/16) x4 = tan(6pi/16) x5 = infinity An argument x in [Xn-1, Xn] is now reduced to an argument t in [-X1, X1] by the following formulas: t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x) arctan(x) = arctan(xi) + arctan(t) For the interval [0, tan(p/16)] an approximation is used: arctan(x) = x * P(x*x)/Q(x*x) *) (* Hart & Cheney # 5037 *) CONST p0 = 0.7698297257888171026986294745D+03; p1 = 0.1557282793158363491416585283D+04; p2 = 0.1033384651675161628243434662D+04; p3 = 0.2485841954911840502660889866D+03; p4 = 0.1566564964979791769948970100D+02; q0 = 0.7698297257888171026986294911D+03; q1 = 0.1813892701754635858982709369D+04; q2 = 0.1484049607102276827437401170D+04; q3 = 0.4904645326203706217748848797D+03; q4 = 0.5593479839280348664778328000D+02; q5 = 0.1000000000000000000000000000D+01; VAR xsqr: LONGREAL; neg: BOOLEAN; i: INTEGER; BEGIN IF NOT arctaninit THEN arctaninit := TRUE; WITH precomp[0] DO X := 0.19891236737965800691159762264467622D; arctan := 0.0D; OneOverXn := 0.0D; OneOverXnSquarePlusone := 0.0D; END; WITH precomp[1] DO X := 0.66817863791929891999775768652308076D; arctan := 0.39269908169872415480783042290993786D; OneOverXn := 2.41421356237309504880168872420969808D; OneOverXnSquarePlusone := 6.82842712474619009760337744841939616D; END; WITH precomp[2] DO X := 1.49660576266548901760113513494247691D; arctan := longquartpi; OneOverXn := 1.0; OneOverXnSquarePlusone := 2.0; END; WITH precomp[3] DO X := 5.02733949212584810451497507106407238D; arctan := 1.17809724509617246442349126872981358D; OneOverXn := 0.41421356237309504880168872420969808D; OneOverXnSquarePlusone := 1.17157287525380998659662255158060384D; END; WITH precomp[4] DO X := 0.0D; arctan := longhalfpi; OneOverXn := 0.0D; OneOverXnSquarePlusone := 1.0D; END; END; neg := FALSE; IF x < 0.0D THEN neg := TRUE; x := -x; END; i := 0; WHILE (i <= 3) AND (x >= precomp[i].X) DO INC(i); END; IF (i # 0) THEN WITH precomp[i] DO x := arctan + longarctan(OneOverXn-OneOverXnSquarePlusone/(OneOverXn+x)); END ELSE xsqr := x * x; x := x * ((((p4*xsqr+p3)*xsqr+p2)*xsqr+p1)*xsqr+p0) / (((((q5*xsqr+q4)*xsqr+q3)*xsqr+q2)*xsqr+q1)*xsqr+q0); END; IF neg THEN RETURN -x; END; RETURN x; END longarctan; (* hyperbolic functions *) PROCEDURE sinh(x: REAL): REAL; BEGIN RETURN SHORT(longsinh(LONG(x))); END sinh; PROCEDURE longsinh(x: LONGREAL): LONGREAL; VAR expx: LONGREAL; BEGIN expx := longexp(x); RETURN (expx - 1.0D/expx)/2.0D; END longsinh; PROCEDURE cosh(x: REAL): REAL; BEGIN RETURN SHORT(longcosh(LONG(x))); END cosh; PROCEDURE longcosh(x: LONGREAL): LONGREAL; VAR expx: LONGREAL; BEGIN expx := longexp(x); RETURN (expx + 1.0D/expx)/2.0D; END longcosh; PROCEDURE tanh(x: REAL): REAL; BEGIN RETURN SHORT(longtanh(LONG(x))); END tanh; PROCEDURE longtanh(x: LONGREAL): LONGREAL; VAR expx: LONGREAL; BEGIN expx := longexp(x); RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx); END longtanh; PROCEDURE arcsinh(x: REAL): REAL; BEGIN RETURN SHORT(longarcsinh(LONG(x))); END arcsinh; PROCEDURE longarcsinh(x: LONGREAL): LONGREAL; VAR neg: BOOLEAN; BEGIN neg := FALSE; IF x < 0.0D THEN neg := TRUE; x := -x; END; x := longln(x + longsqrt(x*x+1.0D)); IF neg THEN RETURN -x; END; RETURN x; END longarcsinh; PROCEDURE arccosh(x: REAL): REAL; BEGIN RETURN SHORT(longarccosh(LONG(x))); END arccosh; PROCEDURE longarccosh(x: LONGREAL): LONGREAL; BEGIN IF x < 1.0D THEN Message("arccosh: argument < 1"); HALT END; RETURN longln(x + longsqrt(x*x - 1.0D)); END longarccosh; PROCEDURE arctanh(x: REAL): REAL; BEGIN RETURN SHORT(longarctanh(LONG(x))); END arctanh; PROCEDURE longarctanh(x: LONGREAL): LONGREAL; BEGIN IF (x <= -1.0D) OR (x >= 1.0D) THEN Message("arctanh: ABS(argument) >= 1"); HALT END; RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D; END longarctanh; (* conversions *) PROCEDURE RadianToDegree(x: REAL): REAL; BEGIN RETURN SHORT(longRadianToDegree(LONG(x))); END RadianToDegree; PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL; BEGIN RETURN x * OneRadianInDegrees; END longRadianToDegree; PROCEDURE DegreeToRadian(x: REAL): REAL; BEGIN RETURN SHORT(longDegreeToRadian(LONG(x))); END DegreeToRadian; PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL; BEGIN RETURN x * OneDegreeInRadians; END longDegreeToRadian; BEGIN arctaninit := FALSE; END Mathlib.