/* * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* $Header$ */ #include #include #include #include "localmath.h" double atan(double x) { /* The interval [0, infinity) is treated as follows: Define partition points Xi X0 = 0 X1 = tan(pi/16) X2 = tan(3pi/16) X3 = tan(5pi/16) X4 = tan(7pi/16) X5 = infinity and evaluation nodes xi x2 = tan(2pi/16) x3 = tan(4pi/16) x4 = tan(6pi/16) x5 = infinity An argument x in [Xn-1, Xn] is now reduced to an argument t in [-X1, X1] by the following formulas: t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x) arctan(x) = arctan(xi) + arctan(t) For the interval [0, p/16] an approximation is used: arctan(x) = x * P(x*x)/Q(x*x) */ static struct precomputed { double X; /* partition point */ double arctan; /* arctan of evaluation node */ double one_o_x; /* 1 / xn */ double one_o_xsq_p_1; /* 1 / (xn*xn) + 1 */ } prec[5] = { { 0.19891236737965800691159762264467622, 0.0, 0.0, /* these don't matter */ 0.0 } , { 0.66817863791929891999775768652308076, /* tan(3pi/16) */ M_PI_8, 2.41421356237309504880168872420969808, 6.82842712474619009760337744841939616 }, { 1.49660576266548901760113513494247691, /* tan(5pi/16) */ M_PI_4, 1.0, 2.0 }, { 5.02733949212584810451497507106407238, /* tan(7pi/16) */ M_3PI_8, 0.41421356237309504880168872420969808, 1.17157287525380998659662255158060384 }, { DBL_MAX, M_PI_2, 0.0, 1.0 }}; /* Hart & Cheney # 5037 */ static double p[5] = { 0.7698297257888171026986294745e+03, 0.1557282793158363491416585283e+04, 0.1033384651675161628243434662e+04, 0.2485841954911840502660889866e+03, 0.1566564964979791769948970100e+02 }; static double q[6] = { 0.7698297257888171026986294911e+03, 0.1813892701754635858982709369e+04, 0.1484049607102276827437401170e+04, 0.4904645326203706217748848797e+03, 0.5593479839280348664778328000e+02, 0.1000000000000000000000000000e+01 }; int negative = x < 0.0; register struct precomputed *pr = prec; if (negative) { x = -x; } while (x > pr->X) pr++; if (pr != prec) { x = pr->arctan + atan(pr->one_o_x - pr->one_o_xsq_p_1/(pr->one_o_x + x)); } else { double xsq = x*x; x = x * POLYNOM4(xsq, p)/POLYNOM5(xsq, q); } return negative ? -x : x; }