/* * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* $Id$ */ #define __NO_DEFS #include static double sinus(x, cos_flag) double x; { /* Algorithm and coefficients from: "Software manual for the elementary functions" by W.J. Cody and W. Waite, Prentice-Hall, 1980 */ static double r[] = { -0.16666666666666665052e+0, 0.83333333333331650314e-2, -0.19841269841201840457e-3, 0.27557319210152756119e-5, -0.25052106798274584544e-7, 0.16058936490371589114e-9, -0.76429178068910467734e-12, 0.27204790957888846175e-14 }; double xsqr; double y; int neg = 0; if (x < 0) { x = -x; neg = 1; } if (cos_flag) { neg = 0; y = M_PI_2 + x; } else y = x; /* ??? avoid loss of significance, if y is too large, error ??? */ y = y * M_1_PI + 0.5; /* Use extended precision to calculate reduced argument. Here we used 12 bits of the mantissa for a1. Also split x in integer part x1 and fraction part x2. */ #define A1 3.1416015625 #define A2 -8.908910206761537356617e-6 { double x1, x2; extern double _fif(); _fif(y, 1.0, &y); if (_fif(y, 0.5, &x1)) neg = !neg; if (cos_flag) y -= 0.5; x2 = _fif(x, 1.0, &x1); x = x1 - y * A1; x += x2; x -= y * A2; #undef A1 #undef A2 } if (x < 0) { neg = !neg; x = -x; } /* ??? avoid underflow ??? */ y = x * x; x += x * y * POLYNOM7(y, r); return neg ? -x : x; } double _sin(x) double x; { return sinus(x, 0); } double _cos(x) double x; { if (x < 0) x = -x; return sinus(x, 1); } /* EXTENSION */ double _tan(x) double x; { return _sin(x)/_cos(x); }