/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * */ /* * L L G E N * * An Extended LL(1) Parser Generator * * Author : Ceriel J.H. Jacobs */ /* * compute.c * Defines routines to compute FIRST, FOLLOW etc. * Also checks the continuation grammar from the specified grammar. */ # include "types.h" # include "extern.h" # include "sets.h" # include "assert.h" # include "io.h" # ifndef NORCSID static string rcsid = "$Header$"; # endif p_set get_set(); typedef struct lngth { /* Structure used to compute the shortest possible * length of a terminal production of a rule. * In case of a tie, the second field is used. */ int cnt; int val; } t_length, *p_length; /* Defined in this file : */ extern do_compute(); STATIC createsets(); STATIC walk(); STATIC co_trans(); STATIC int nempty(); extern empty(); STATIC int nfirst(); STATIC first(); STATIC int nfollow(); STATIC follow(); STATIC co_dirsymb(); STATIC co_others(); STATIC do_lengthcomp(); STATIC complength(); STATIC add(); STATIC int compare(); STATIC setdefaults(); STATIC do_contains(); STATIC contains(); STATIC int nsafes(); STATIC int do_safes(); do_compute() { /* * Does all the work, by calling other routines (divide and conquer) */ register p_nont p; register p_start st; createsets(); co_trans(nempty); /* Which nonterminals produce empty? */ co_trans(nfirst); /* Computes first sets */ /* * Compute FOLLOW sets. * First put EOFILE in the follow set of the start nonterminals. */ for (st = start; st; st = st->ff_next) { p = &nonterms[st->ff_nont]; PUTIN(p->n_follow,0); } co_trans(nfollow); /* * Compute the sets which determine which alternative to choose * in case of a choice */ for (p = nonterms; p < maxnt; p++) { co_dirsymb(p->n_follow,p->n_rule); } /* * Compute the minimum length of productions of nonterminals, * and then determine the default choices */ do_lengthcomp(); /* * Compute the contains sets */ for (p = nonterms; p < maxnt; p++) do_contains(p); for (p = nonterms; p < maxnt; p++) contains(p->n_rule, (p_set) 0); /* * Compute the safety of each nonterminal and term. * The safety gives an answer to the question whether a scan is done, * and how it should be handled. */ for (p = nonterms; p < maxnt; p++) { /* * Don't know anything yet */ setntsafe(p, NOSAFETY); setntout(p, NOSAFETY); } for (st = start; st; st = st->ff_next) { /* * But start symbols are called with lookahead done */ p = &nonterms[st->ff_nont]; setntsafe(p,SCANDONE); } co_trans(nsafes); # ifndef NDEBUG if (debug) { fputs("Safeties:\n", stderr); for (p = nonterms; p < maxnt; p++) { fprintf(stderr, "%s\t%d\t%d\n", p->n_name, getntsafe(p), getntout(p)); } } # endif } STATIC createsets() { /* * Allocate space for the sets */ register p_nont p; for (p = nonterms; p < maxnt; p++) { p->n_first = get_set(); p->n_follow = get_set(); walk(p->n_rule); } } STATIC walk(p) register p_gram p; { /* * Walk through the grammar rule p, allocating sets */ for (;;) { switch (g_gettype(p)) { case TERM : { register p_term q; q = &terms[g_getcont(p)]; q->t_first = get_set(); q->t_follow = get_set(); walk(q->t_rule); break; } case ALTERNATION : { register p_link l; l = &links[g_getcont(p)]; l->l_symbs = get_set(); l->l_others = get_set(); walk(l->l_rule); break; } case EORULE : return; } p++; } } STATIC co_trans(fc) int (*fc)(); { register p_nont p; register int change; do { change = 0; for (p = nonterms; p < maxnt; p++) { if ((*fc)(p)) change = 1; } } while (change); } STATIC int nempty(p) register p_nont p; { if (!(p->n_flags & EMPTY) && empty(p->n_rule)) { p->n_flags |= EMPTY; return 1; } return 0; } empty(p) register p_gram p; { /* * Does the rule pointed to by p produce empty ? */ for (;;) { switch (g_gettype(p)) { case EORULE : return 1; case TERM : { register p_term q; q = &terms[g_getcont(p)]; if (r_getkind(q) == STAR || r_getkind(q) == OPT || empty(q->t_rule) ) break; return 0; } case ALTERNATION : if (empty(links[g_getcont(p)].l_rule)) { return 1; } if (g_gettype(p+1) == EORULE) return 0; break; case NONTERM : if (nonterms[g_getnont(p)].n_flags & EMPTY) { break; } /* Fall through */ case LITERAL : case TERMINAL : return 0; } p++; } } STATIC int nfirst(p) register p_nont p; { return first(p->n_first, p->n_rule, 0); } STATIC first(setp,p,flag) p_set setp; register p_gram p; { /* * Compute the FIRST set of rule p. * If flag = 0, also the first sets for terms and alternations in * the rule p are computed. * The FIRST set is put in setp. * return 1 if the set refered to by "setp" changed */ register s; /* Will gather return value */ int noenter;/* when set, unables entering of elements into * setp. This is necessary to walk through the * rest of rule p. */ s = 0; noenter = 0; for (;;) { switch (g_gettype(p)) { case EORULE : return s; case TERM : { register p_term q; q = &terms[g_getcont(p)]; if (flag == 0) { if (first(q->t_first,q->t_rule,0))/*nothing*/; } if (!noenter) s |= setunion(setp,q->t_first); p++; if (r_getkind(q) == STAR || r_getkind(q) == OPT || empty(q->t_rule)) continue; break; } case ALTERNATION : { register p_link l; l = &links[g_getcont(p)]; if (flag == 0) { if (first(l->l_symbs,l->l_rule,0))/*nothing*/; } if (noenter == 0) { s |= setunion(setp,l->l_symbs); } if (g_gettype(p+1) == EORULE) return s; } /* Fall Through */ case ACTION : p++; continue; case LITERAL : case TERMINAL : if ((noenter == 0) && !IN(setp,g_getcont(p))) { s = 1; PUTIN(setp,g_getcont(p)); } p++; break; case NONTERM : { register p_nont n; n = &nonterms[g_getnont(p)]; if (noenter == 0) { s |= setunion(setp,n->n_first); if (ntneeded) NTPUTIN(setp,g_getnont(p)); } p++; if (n->n_flags & EMPTY) continue; break; } } if (flag == 0) { noenter = 1; continue; } return s; } } STATIC int nfollow(p) register p_nont p; { return follow(p->n_follow, p->n_rule); } STATIC follow(setp,p) p_set setp; register p_gram p; { /* * setp is the follow set for the rule p. * Compute the follow sets in the rule p from this set. * Return 1 if a follow set of a nonterminal changed. */ register s; /* Will gather return value */ s = 0; for (;;) { switch (g_gettype(p)) { case EORULE : return s; case TERM : { register p_term q; q = &terms[g_getcont(p)]; if (empty(p+1)) { /* * If what follows the term can be empty, * everything that can follow the whole * rule can also follow the term */ s |= setunion(q->t_follow,setp); } /* * Everything that can start the rest of the rule * can follow the term */ s |= first(q->t_follow,p+1,1); if (r_getkind(q) == STAR || r_getkind(q) == PLUS || r_getnum(q) ) { /* * If the term involves a repetition * of possibly more than one, * everything that can start the term * can also follow it. */ s |= follow(q->t_first,q->t_rule); } /* * Now propagate the set computed sofar */ s |= follow(q->t_follow, q->t_rule); break; } case ALTERNATION : /* * Just propagate setp */ s |= follow(setp,links[g_getcont(p)].l_rule); break; case NONTERM : { register p_nont n; n = &nonterms[g_getnont(p)]; s |= first(n->n_follow,p+1,1); if (empty(p+1)) { /* * If the rest of p can produce empty, * everything that follows p can follow * the nonterminal */ s |= setunion(n->n_follow,setp); } break; } } p++; } } STATIC co_dirsymb(setp,p) p_set setp; register p_gram p; { /* * Walk the rule p, doing the work for alternations */ register p_gram s = 0; for (;;) { switch (g_gettype(p)) { case EORULE : return; case TERM : { register p_term q; q = &terms[g_getcont(p)]; co_dirsymb(q->t_follow,q->t_rule); break; } case ALTERNATION : { register p_link l; /* * Save first alternative */ if (!s) s = p; l = &links[g_getcont(p)]; co_dirsymb(setp,l->l_rule); if (empty(l->l_rule)) { /* * If the rule can produce empty, everything * that follows it can also start it */ setunion(l->l_symbs,setp); } if (g_gettype(p+1) == EORULE) { /* * Every alternation is implemented as a * choice between two alternatives : * this one or one of the following. * The l_others set will contain the starters * of the other alternatives */ co_others(s); return; } } } p++; } } STATIC co_others(p) register p_gram p; { /* * compute the l_others-sets for the list of alternatives * indicated by p */ register p_link l1,l2; l1 = &links[g_getcont(p)]; p++; l2 = &links[g_getcont(p)]; setunion(l1->l_others,l2->l_symbs); if (g_gettype(p+1) != EORULE) { /* * First compute l2->l_others */ co_others(p); /* * and then l1->l_others */ setunion(l1->l_others,l2->l_others); } } static p_length length; # define INFINITY 32767 STATIC ncomplength(p) register p_nont p; { register p_length pl = &length[p - nonterms]; int x = pl->cnt; pl->cnt = -1; complength(p->n_rule, pl); return pl->cnt < INFINITY && x == INFINITY; } STATIC do_lengthcomp() { /* * Compute the minimum length of a terminal production for each * nonterminal. * This length consists of two fields: the number of terminals, * and a number that is composed of * - the value of the first terminal * - a crude measure of the number of terms and nonterminals in the * production of this shortest string. */ register p_length pl; register p_nont p; register p_start st; int change = 1; p_mem alloc(); length = (p_length) alloc((unsigned) (nnonterms * sizeof(*length))); for (pl = &length[nnonterms-1]; pl >= length; pl--) { pl->val = pl->cnt = INFINITY; } co_trans(ncomplength); pl = length; for (p = nonterms; p < maxnt; p++, pl++) { if (pl->cnt == INFINITY) { p->n_flags |= RECURSIVE; } setdefaults(p->n_rule); } free ((p_mem) length); } STATIC complength(p,le) register p_gram p; p_length le; { /* * Walk grammar rule p, computing minimum lengths */ register p_link l; register p_term q; t_length i; t_length X; X.cnt = 0; X.val = 0; for (;;) { switch (g_gettype(p)) { case LITERAL : case TERMINAL : if (!X.cnt) add(&X, 1, g_getcont(p)); else add(&X, 1, 0); break; case ALTERNATION : X.cnt = INFINITY; X.val = INFINITY; while (g_gettype(p) != EORULE) { l = &links[g_getcont(p)]; complength(l->l_rule,&i); if (l->l_flag & DEF) { X = i; break; } if (compare(&i, &X) < 0) { X = i; } p++; } /* Fall through */ case EORULE : le->cnt = X.cnt; le->val = X.val; return; case TERM : { register int rep; q = &terms[g_getcont(p)]; rep = r_getkind(q); if ((q->t_flags&PERSISTENT) || rep==FIXED || rep==PLUS) { complength(q->t_rule,&i); add(&X, i.cnt, i.val); if (i.cnt == 0) X.val += ntokens; if (rep == FIXED && r_getnum(q) > 0) { for (rep = r_getnum(q) - 1; rep > 0; rep--) { add(&X, i.cnt, i.val); } } } else { /* Empty producing term on this path */ X.val += ntokens; } break; } case NONTERM : { int nn = g_getnont(p); register p_length pl = &length[nn]; int x = pl->cnt; if (x == INFINITY) { pl->cnt = -1; complength(nonterms[nn].n_rule,pl); x = pl->cnt; } else if (x == -1) x = INFINITY; add(&X, x, pl->val); if (x == 0) { /* Empty producing nonterminal */ X.val += ntokens; }} } p++; } } STATIC add(a, c, v) register p_length a; { if (a->cnt == INFINITY || c == INFINITY) { a->cnt = INFINITY; return; } if (a->cnt == 0) a->val = v; a->cnt += c; } STATIC int compare(a, b) register p_length a, b; { if (a->cnt != b->cnt) return a->cnt - b->cnt; return a->val - b->val; } STATIC setdefaults(p) register p_gram p; { for (;;) { switch(g_gettype(p)) { case EORULE: return; case TERM: setdefaults(terms[g_getcont(p)].t_rule); break; case ALTERNATION: { register p_link l, l1; int temp = 0, temp1; t_length count, i; count.cnt = INFINITY; count.val = INFINITY; l1 = &links[g_getcont(p)]; do { l = &links[g_getcont(p)]; complength(l->l_rule,&i); if (l->l_flag & DEF) temp = 1; temp1 = compare(&i, &count); if (temp1 < 0 || (temp1 == 0 && l1->l_flag & AVOIDING)) { l1 = l; count = i; } setdefaults(l->l_rule); p++; } while (g_gettype(p) != EORULE); if (!temp) { /* No user specified default */ l1->l_flag |= DEF; } return; } } p++; } } STATIC do_contains(n) register p_nont n; { /* * Compute the total set of symbols that nonterminal n can * produce */ if (n->n_contains == 0) { n->n_contains = get_set(); contains(n->n_rule,n->n_contains); /* * If the rule can produce empty, delete all symbols that * can follow the rule as well as be in the rule. * This is needed because the contains-set may only contain * symbols that are guaranteed to be eaten by the rule! * Otherwise, the generated parser may loop forever */ if (n->n_flags & EMPTY) { setminus(n->n_contains,n->n_follow); } /* * But the symbols that can start the rule are always * eaten */ setunion(n->n_contains,n->n_first); } } STATIC contains(p,set) register p_gram p; register p_set set; { /* * Does the real computation of the contains-sets */ for (;;) { switch (g_gettype(p)) { case EORULE : return; case TERM : { register p_term q; int rep; q = &terms[g_getcont(p)]; rep = r_getkind(q); if ((q->t_flags & PERSISTENT) || rep == PLUS || rep == FIXED) { /* * In these cases, the term belongs to the * continuation grammar. * Otherwise, q->t_contains is just * q->t_first */ if (!q->t_contains) { q->t_contains = get_set(); } contains(q->t_rule,q->t_contains); if (rep != FIXED || empty(q->t_rule)) { setminus(q->t_contains,q->t_follow); } setunion(q->t_contains,q->t_first); } else { contains(q->t_rule, (p_set) 0); q->t_contains = q->t_first; } if (set) setunion(set,q->t_contains); break; } case NONTERM : { register p_nont n; n = &nonterms[g_getnont(p)]; do_contains(n); if (set) { setunion(set, n->n_contains); if (ntneeded) NTPUTIN(set, g_getnont(p)); } break; } case ALTERNATION : { register p_link l; l = &links[g_getcont(p)]; contains(l->l_rule, (l->l_flag & DEF) ? set : (p_set) 0); break; } case LITERAL : case TERMINAL : { register hulp; if (set) { hulp = g_getcont(p); assert(hulp < ntokens); PUTIN(set,hulp); }} } p++; } } STATIC int nsafes(p) register p_nont p; { int ch; register int i; ch = 0; i = getntsafe(p); if (i != NOSAFETY) { i = do_safes(p->n_rule, i, &ch); if (i < SCANDONE) i = SCANDONE; /* After a nonterminal, we only know whether a scan was done or not */ if (getntout(p) != i) { ch = 1; setntout(p,i); } } return ch; } STATIC int do_safes(p,safe,ch) register p_gram p; register int *ch; { /* * Walk the grammar rule, doing the computation described in the * comment of the procedure above this one. */ int retval; for (;;) { switch (g_gettype(p)) { case ACTION: p++; continue; case LITERAL: case TERMINAL: safe = NOSCANDONE; break; case TERM : { register p_term q; int i,rep; q = &terms[g_getcont(p)]; i = r_getnum(q); rep = r_getkind(q); retval = do_safes(q->t_rule, t_safety(rep,i,q->t_flags&PERSISTENT,safe),ch); settout(q, retval); safe = t_after(rep, i, retval); break; } case ALTERNATION : { register p_link l; register int i, f; f = 1; while (g_gettype(p) == ALTERNATION) { l = &links[g_getcont(p)]; if (safe > SAFE && (l->l_flag & DEF)) { i = do_safes(l->l_rule,SAFESCANDONE,ch); } else i = do_safes(l->l_rule,SAFE,ch); if (f) retval = i; else if (i != retval) { if (i == NOSCANDONE || retval == NOSCANDONE) { retval = SCANDONE; } else if (i > retval) retval = i; } p++; f = 0; } return retval; } case NONTERM : { register p_nont n; register int nsafe, osafe; n = &nonterms[g_getnont(p)]; nsafe = getntsafe(n); osafe = safe; safe = getntout(n); if (safe == NOSAFETY) safe = SCANDONE; if (osafe == nsafe) break; if (nsafe == NOSAFETY) { *ch = 1; setntsafe(n, osafe); break; } if (osafe == NOSCANDONE || nsafe == NOSCANDONE) { if (nsafe != SCANDONE) { *ch = 1; setntsafe(n, SCANDONE); } break; } if (osafe > nsafe) { setntsafe(n, osafe); *ch = 1; } break; } case EORULE : return safe; } p++; } } t_safety(rep, count, persistent, safety) { if (safety == NOSCANDONE) safety = SCANDONE; switch(rep) { default: assert(0); case OPT: if (!persistent || safety < SAFESCANDONE) return SAFE; return SAFESCANDONE; case STAR: if (persistent) return SAFESCANDONE; return SAFE; case PLUS: if (persistent) { if (safety > SAFESCANDONE) return safety; return SAFESCANDONE; } return safety; case FIXED: if (!count) return safety; return SCANDONE; } /* NOTREACHED */ } t_after(rep, count, outsafety) { if (count == 0 && (rep == STAR || rep == PLUS)) { return SAFESCANDONE; } if (rep != FIXED) { if (outsafety <= SAFESCANDONE) return SAFESCANDONE; return SCANDONE; } return outsafety; }