#ifndef lint static char rcsid[] = "$Header$"; #endif /* * Memory manager. Memory is divided into NMEMS pieces. There is a struct * for each piece telling where it is, how many bytes are used, and how may * are left. If a request for core doesn't fit in the left bytes, an sbrk() * is done and pieces after the one that requested the growth are moved up. */ #include "out.h" #include "const.h" #include "assert.h" #include "debug.h" #include "memory.h" struct memory mems[NMEMS]; bool incore = TRUE; /* TRUE while everything can be kept in core. */ ind_t core_position = (ind_t)0; /* Index of current module. */ #define AT_LEAST 2 /* See comment about string areas. */ /* * Initialize some pieces of core. We hope that this will be our last * real allocation, meaning we've made the right choices. */ init_core() { register char *base; register ind_t total_size; register struct memory *mem; extern char *sbrk(); #include "mach.c" total_size = (ind_t)0; /* Will accumulate the sizes. */ base = sbrk(0); /* First free. */ for (mem = mems; mem < &mems[NMEMS]; mem++) { mem->mem_base = base; mem->mem_full = (ind_t)0; base += mem->mem_left; /* Each piece will start after prev. */ total_size += mem->mem_left; } /* * String areas are special-cased. The first byte is unused as a way to * distinguish a name without string from a name which has the first * string in the string area. */ if (mems[ALLOLCHR].mem_left == 0) total_size += 1; else mems[ALLOLCHR].mem_left -= 1; if (mems[ALLOGCHR].mem_left == 0) total_size += 1; else mems[ALLOGCHR].mem_left -= 1; mems[ALLOLCHR].mem_full = 1; mems[ALLOGCHR].mem_full = 1; if (total_size != (int)total_size || (int)sbrk((int)total_size) == -1) { incore = FALSE; /* In core strategy failed. */ if ((int)sbrk(AT_LEAST) == -1) fatal("no core at all"); } } /* * Allocate an extra block of `incr' bytes and move all pieces with index * higher than `piece' up with the size of the block. Return whether the * allocate succeeded. */ static bool move_up(piece, incr) register int piece; register ind_t incr; { register struct memory *mem; extern char *sbrk(); debug("move_up(%d, %d)\n", piece, (int)incr, 0, 0); if (incr != (int)incr || (int)sbrk((int)incr) == -1) return FALSE; for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--) copy_up(mem, incr); mems[piece].mem_left += incr; return TRUE; } extern int passnumber; /* * This routine is called if `piece' needs `incr' bytes and the system won't * give them. We first steal the free bytes of all lower pieces and move them * and `piece' down. If that doesn't give us enough bytes, we steal the free * bytes of all higher pieces and move them up. We return whether we have * enough bytes, the first or the second time. */ static bool compact(piece, incr) register int piece; register ind_t incr; { register ind_t gain; register struct memory *mem; debug("compact(%d, %d)\n", piece, (int)incr, 0, 0); gain = mems[0].mem_left; mems[0].mem_left = (ind_t)0; for (mem = &mems[1]; mem <= &mems[piece]; mem++) { /* Here memory is inserted before a piece. */ assert(passnumber == FIRST || gain == (ind_t)0); copy_down(mem, gain); gain += mem->mem_left; mem->mem_left = (ind_t)0; } /* * Note that we already added the left bytes of the piece we want to * enlarge to `gain'. */ if (gain < incr) { register ind_t up = (ind_t)0; for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--) { /* Here memory is appended after a piece. */ up += mem->mem_left; copy_up(mem, up); mem->mem_left = (ind_t)0; } gain += up; } mems[piece].mem_left = gain; return gain >= incr; } /* * The bytes of `mem' must be moved `dist' down in the address space. * We copy the bytes from low to high, because the tail of the new area may * overlap with the old area, but we do not want to overwrite them before they * are copied. */ static copy_down(mem, dist) register struct memory *mem; ind_t dist; { register char *old; register char *new; register ind_t size; size = mem->mem_full; old = mem->mem_base; new = old - dist; mem->mem_base = new; while (size--) *new++ = *old++; } /* * The bytes of `mem' must be moved `dist' up in the address space. * We copy the bytes from high to low, because the tail of the new area may * overlap with the old area, but we do not want to overwrite them before they * are copied. */ static copy_up(mem, dist) register struct memory *mem; ind_t dist; { register char *old; register char *new; register ind_t size; size = mem->mem_full; old = mem->mem_base + size; new = old + dist; while (size--) *--new = *--old; mem->mem_base = new; } /* * Add `size' bytes to the bytes already allocated for `piece'. If it has no * free bytes left, ask them from memory or, if that fails, from the free * bytes of other pieces. The offset of the new area is returned. No matter * how many times the area is moved, because of another allocate, this offset * remains valid. */ ind_t alloc(piece, size) register int piece; register long size; { register ind_t incr = 0; register ind_t left = mems[piece].mem_left; register ind_t full = mems[piece].mem_full; assert(passnumber == FIRST || (!incore && piece == ALLOMODL)); if (size == (long)0) return full; if (size != (ind_t)size) return BADOFF; while (left + incr < size) incr += INCRSIZE; if (incr == 0 || move_up(piece, incr) || compact(piece, incr)) { mems[piece].mem_full += size; mems[piece].mem_left -= size; return full; } else { incore = FALSE; return BADOFF; } } /* * Same as alloc() but for a piece which really needs it. If the first * attempt fails, release the space occupied by other pieces and try again. */ ind_t hard_alloc(piece, size) register int piece; register long size; { register ind_t ret; register int i; if (size != (ind_t)size) return BADOFF; if ((ret = alloc(piece, size)) != BADOFF) return ret; /* * Deallocate what we don't need. */ for (i = 0; i < NMEMS; i++) { switch (i) { case ALLOGLOB: case ALLOGCHR: case ALLOSYMB: case ALLOARCH: case ALLOMODL: break; /* Do not try to deallocate this. */ default: dealloc(i); break; } } free_saved_moduls(); return alloc(piece, size); } /* * We don't need the previous modules, so we put the current module * at the start of the piece allocated for module contents, thereby * overwriting the saved modules, and release its space. */ static free_saved_moduls() { register ind_t size; register char *old, *new; register struct memory *mem = &mems[ALLOMODL]; size = mem->mem_full - core_position; new = mem->mem_base; old = new + core_position; while (size--) *new++ = *old++; mem->mem_full -= core_position; mem->mem_left += core_position; core_position = (ind_t)0; } /* * The piece of memory with index `piece' is no longer needed. * We take care that it can be used by compact() later, if needed. */ dealloc(piece) register int piece; { /* * Some pieces need their memory throughout the program. */ assert(piece != ALLOGLOB); assert(piece != ALLOGCHR); assert(piece != ALLOSYMB); assert(piece != ALLOARCH); mems[piece].mem_left += mems[piece].mem_full; mems[piece].mem_full = (ind_t)0; } char * core_alloc(piece, size) register int piece; register long size; { register ind_t off; if ((off = alloc(piece, size)) == BADOFF) return (char *)0; return address(piece, off); } /* * Reset index into piece of memory for modules and * take care that the allocated pieces will not be moved. */ freeze_core() { register int i; core_position = (ind_t)0; if (incore) return; for (i = 0; i < NMEMS; i++) { switch (i) { case ALLOGLOB: case ALLOGCHR: case ALLOSYMB: case ALLOARCH: break; /* Do not try to deallocate this. */ default: dealloc(i); break; } } compact(NMEMS - 1, (ind_t)0); } /* ------------------------------------------------------------------------- */ extern bool bytes_reversed; extern bool words_reversed; /* * To transform the various pieces of the output in core to the file format, * we must order the bytes in the ushorts and longs as ACK prescribes. */ write_bytes() { ushort nsect, nrelo; long offchar; int fd; register struct memory *mem; extern ushort NLocals, NGlobals; extern long NLChars, NGChars; extern int flagword; extern struct outhead outhead; extern struct outsect outsect[]; extern char *outputname; nsect = outhead.oh_nsect; nrelo = outhead.oh_nrelo; offchar = OFF_CHAR(outhead); if (bytes_reversed || words_reversed) { swap((char *)&outhead, SF_HEAD); sectswap(outsect, nsect); reloswap(nrelo); } /* * We allocated two areas: one for local and one for global names. * Also, we used another kind of on_foff than on file. * At the end of the global area we have put the section names. */ if (!(flagword & SFLAG)) { namecpy((struct outname *)mems[ALLOLOCL].mem_base, NLocals, offchar ); namecpy((struct outname *)mems[ALLOGLOB].mem_base, NGlobals + nsect, offchar + NLChars ); } if ((fd = creat(outputname, 0666)) < 0) fatal("can't create %s", outputname); /* * These pieces must always be written. */ writelong(fd, (char *)&outhead, (ind_t)SZ_HEAD); writelong(fd, (char *)outsect, (ind_t)nsect * SZ_SECT); for (mem = &mems[ALLOEMIT]; mem < &mems[ALLORELO]; mem++) writelong(fd, mem->mem_base, mem->mem_full); /* * The rest depends on the flags. */ if (flagword & RFLAG) writelong(fd, mems[ALLORELO].mem_base, mems[ALLORELO].mem_full); if (!(flagword & SFLAG)) { writelong(fd, mems[ALLOLOCL].mem_base, mems[ALLOLOCL].mem_full); writelong(fd, mems[ALLOGLOB].mem_base, mems[ALLOGLOB].mem_full); writelong(fd, mems[ALLOLCHR].mem_base + 1, (ind_t)NLChars); writelong(fd, mems[ALLOGCHR].mem_base + 1, (ind_t)NGChars); #ifdef SYMDBUG writelong(fd, mems[ALLODBUG].mem_base, mems[ALLODBUG].mem_full); #endif SYMDBUG } close(fd); } static writelong(fd, base, size) register int fd; register char *base; register ind_t size; { register int chunk; while (size) { chunk = size > (ind_t)MAXCHUNK ? MAXCHUNK : size; write(fd, base, chunk); size -= chunk; base += chunk; } } static sectswap(sect, nsect) register struct outsect *sect; register ushort nsect; { while (nsect--) swap((char *)sect++, SF_SECT); } static reloswap(nrelo) register ushort nrelo; { register struct outrelo *relo; relo = (struct outrelo *)mems[ALLORELO].mem_base; while (nrelo--) swap((char *)relo++, SF_RELO); } static namecpy(name, nname, offchar) register struct outname *name; register ushort nname; register long offchar; { while (nname--) { if (name->on_foff) name->on_foff += offchar - 1; if (bytes_reversed || words_reversed) swap((char *)name, SF_NAME); name++; } }