/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* E X P R E S S I O N C H E C K I N G */ /* $Header$ */ /* Check expressions, and try to evaluate them as far as possible. */ #include "debug.h" #include #include #include #include #include "strict3rd.h" #include "Lpars.h" #include "idf.h" #include "type.h" #include "LLlex.h" #include "def.h" #include "node.h" #include "scope.h" #include "const.h" #include "standards.h" #include "chk_expr.h" #include "misc.h" #include "warning.h" #include "main.h" #include "nostrict.h" extern char *symbol2str(); extern char *sprint(); STATIC int df_error(nd, mess, edf) t_node *nd; /* node on which error occurred */ char *mess; /* error message */ register t_def *edf; /* do we have a name? */ { if (edf) { if (edf->df_kind != D_ERROR) { node_error(nd,"\"%s\": %s", edf->df_idf->id_text, mess); } } else node_error(nd, mess); return 0; } STATIC int ex_error(nd, mess) register t_node *nd; char *mess; { node_error(nd, "\"%s\": %s", symbol2str(nd->nd_symb), mess); return 0; } MkCoercion(pnd, tp) t_node **pnd; register t_type *tp; { /* Make a coercion from the node indicated by *pnd to the type indicated by tp. If the node indicated by *pnd is constant, try to do the coercion compile-time. Coercions are inserted in the tree when - the expression is not constant or - we are in the second pass and the coercion might cause an error */ register t_node *nd = *pnd; register t_type *nd_tp = nd->nd_type; extern int pass_1; char *wmess = 0; if (nd_tp == tp || nd_tp->tp_fund == T_STRING /* Why ??? */) return; nd_tp = BaseType(nd_tp); if (nd->nd_class == Value && nd_tp->tp_fund != T_REAL && tp->tp_fund != T_REAL) { /* Constant expression mot involving REALs */ switch(tp->tp_fund) { case T_SUBRANGE: if (! chk_bounds(tp->sub_lb, nd->nd_INT, BaseType(tp)->tp_fund) || ! chk_bounds(nd->nd_INT, tp->sub_ub, BaseType(tp)->tp_fund)) { wmess = "range bound"; } break; case T_ENUMERATION: case T_CHAR: if (nd->nd_INT < 0 || nd->nd_INT >= tp->enm_ncst) { wmess = "range bound"; } break; case T_INTORCARD: case T_CARDINAL: case T_POINTER: if ((nd_tp->tp_fund == T_INTEGER && nd->nd_INT < 0) || (nd->nd_INT & ~full_mask[(int)(tp->tp_size)])) { wmess = "conversion"; } break; case T_INTEGER: { long i = ~max_int[(int)(tp->tp_size)]; long j = nd->nd_INT & i; if ((nd_tp->tp_fund == T_INTEGER && j != i && j != 0) || (nd_tp->tp_fund != T_INTEGER && j)) { wmess = "conversion"; } } break; } if (wmess) { node_warning(nd, W_ORDINARY, "might cause %s error", wmess); } if (!wmess || pass_1) { nd->nd_type = tp; return; } } *pnd = nd = MkNode(Uoper, NULLNODE, nd, &(nd->nd_token)); nd->nd_symb = COERCION; nd->nd_type = tp; } int ChkVariable(expp, flags) register t_node *expp; { /* Check that "expp" indicates an item that can be assigned to. */ return ChkDesig(expp, flags) && ( expp->nd_class != Def || ( expp->nd_def->df_kind & (D_FIELD|D_VARIABLE)) || df_error(expp, "variable expected", expp->nd_def)); } STATIC int ChkArrow(expp) register t_node *expp; { /* Check an application of the '^' operator. The operand must be a variable of a pointer type. */ register t_type *tp; assert(expp->nd_class == Arrow); assert(expp->nd_symb == '^'); expp->nd_type = error_type; if (! ChkVariable(expp->nd_right, D_USED)) return 0; tp = expp->nd_right->nd_type; if (tp->tp_fund != T_POINTER) { return ex_error(expp, "illegal operand type"); } expp->nd_type = RemoveEqual(PointedtoType(tp)); return 1; } STATIC int ChkArr(expp, flags) register t_node *expp; { /* Check an array selection. The left hand side must be a variable of an array type, and the right hand side must be an expression that is assignment compatible with the array-index. */ register t_type *tpl; assert(expp->nd_class == Arrsel); assert(expp->nd_symb == '['); expp->nd_type = error_type; if (! (ChkVariable(expp->nd_left, flags) & ChkExpression(expp->nd_right))) { /* Bitwise and, because we want them both evaluated. */ return 0; } tpl = expp->nd_left->nd_type; if (tpl->tp_fund != T_ARRAY) { node_error(expp, "not indexing an ARRAY type"); return 0; } expp->nd_type = RemoveEqual(tpl->arr_elem); /* Type of the index must be assignment compatible with the index type of the array (Def 8.1). However, the index type of a conformant array is not specified. In our implementation it is CARDINAL. */ return ChkAssCompat(&(expp->nd_right), BaseType(IndexType(tpl)), "index type"); } #ifdef DEBUG STATIC int ChkValue(expp) t_node *expp; { switch(expp->nd_symb) { case REAL: case STRING: case INTEGER: return 1; default: crash("(ChkValue)"); } /*NOTREACHED*/ } #endif STATIC int ChkLinkOrName(expp, flags) register t_node *expp; { /* Check either an ID or a construction of the form ID.ID [ .ID ]* */ register t_def *df; expp->nd_type = error_type; if (expp->nd_class == Name) { df = lookfor(expp, CurrVis, 1, flags); expp->nd_def = df; expp->nd_class = Def; expp->nd_type = RemoveEqual(df->df_type); } else if (expp->nd_class == Link) { /* A selection from a record or a module. Modules also have a record type. */ register t_node *left = expp->nd_left; assert(expp->nd_symb == '.'); if (! ChkDesig(left, flags)) return 0; if (left->nd_class==Def && (left->nd_type->tp_fund != T_RECORD || !(left->nd_def->df_kind & (D_MODULE|D_VARIABLE|D_FIELD)) ) ) { return df_error(left, "illegal selection", left->nd_def); } if (left->nd_type->tp_fund != T_RECORD) { node_error(left, "illegal selection"); return 0; } if (!(df = lookup(expp->nd_IDF, left->nd_type->rec_scope, D_IMPORTED, flags))) { id_not_declared(expp); return 0; } expp->nd_def = df; expp->nd_type = RemoveEqual(df->df_type); expp->nd_class = Def; if (!(df->df_flags & (D_EXPORTED|D_QEXPORTED))) { /* Fields of a record are always D_QEXPORTED, so ... */ if (df_error(expp, "not exported from qualifying module", df)) assert(0); } if (!(left->nd_class == Def && left->nd_def->df_kind == D_MODULE)) { return 1; } FreeNode(left); expp->nd_left = 0; } assert(expp->nd_class == Def); return expp->nd_def->df_kind != D_ERROR; } STATIC int ChkExLinkOrName(expp) register t_node *expp; { /* Check either an ID or an ID.ID [.ID]* occurring in an expression. */ register t_def *df; if (! ChkLinkOrName(expp, D_USED)) return 0; df = expp->nd_def; if (df->df_kind & (D_ENUM | D_CONST)) { /* Replace an enum-literal or a CONST identifier by its value. */ if (df->df_kind == D_ENUM) { expp->nd_INT = df->enm_val; expp->nd_symb = INTEGER; } else { unsigned int ln = expp->nd_lineno; assert(df->df_kind == D_CONST); expp->nd_token = df->con_const; expp->nd_lineno = ln; } if (df->df_type->tp_fund == T_SET) { expp->nd_class = Set; inc_refcount(expp->nd_set); } else expp->nd_class = Value; } if (!(df->df_kind & D_VALUE)) { return df_error(expp, "value expected", df); } if (df->df_kind == D_PROCEDURE) { /* Check that this procedure is one that we may take the address from. */ if (df->df_type == std_type || df->df_scope->sc_level > 0) { /* Address of standard or nested procedure taken. */ node_error(expp, "standard or local procedures may not be assigned"); return 0; } } return 1; } STATIC int ChkEl(expr, tp) register t_node **expr; t_type *tp; { return ChkExpression(*expr) && ChkCompat(expr, tp, "set element"); } STATIC int ChkElement(expp, tp, set) t_node **expp; t_type *tp; arith *set; { /* Check elements of a set. This routine may call itself recursively. Also try to compute the set! */ register t_node *expr = *expp; t_type *el_type = ElementType(tp); register unsigned int i; arith lo, hi, low, high; if (expr->nd_class == Link && expr->nd_symb == UPTO) { /* { ... , expr1 .. expr2, ... } First check expr1 and expr2, and try to compute them. */ if (! (ChkEl(&(expr->nd_left), el_type) & ChkEl(&(expr->nd_right), el_type))) { return 0; } if (!(expr->nd_left->nd_class == Value && expr->nd_right->nd_class == Value)) { return 1; } /* We have a constant range. Put all elements in the set */ low = expr->nd_left->nd_INT; high = expr->nd_right->nd_INT; } else { if (! ChkEl(expp, el_type)) return 0; expr = *expp; if (expr->nd_class != Value) { return 1; } low = high = expr->nd_INT; } if (low > high) { node_error(expr, "lower bound exceeds upper bound in range"); return 0; } getbounds(el_type, &lo, &hi); if (low < lo || high > hi) { node_error(expr, "set element out of range"); return 0; } low -= tp->set_low; high -= tp->set_low; for (i=(unsigned)low; i<= (unsigned)high; i++) { set[i/wrd_bits] |= (1<<(i%wrd_bits)); } FreeNode(expr); *expp = 0; return 1; } arith * MkSet(size) unsigned size; { register arith *s; size = (size / (int) word_size + 1) * sizeof(arith); s = (arith *) Malloc(size); clear((char *) s , size); s++; inc_refcount(s); return s; } FreeSet(s) register arith *s; { dec_refcount(s); if (refcount(s) <= 0) { assert(refcount(s) == 0); free((char *) (s-1)); } } STATIC int ChkSet(expp) register t_node *expp; { /* Check the legality of a SET aggregate, and try to evaluate it compile time. Unfortunately this is all rather complicated. */ register t_type *tp; register t_node *nd; register t_def *df; int retval = 1; int SetIsConstant = 1; assert(expp->nd_symb == SET); expp->nd_type = error_type; expp->nd_class = Set; /* First determine the type of the set */ if (nd = expp->nd_left) { /* A type was given. Check it out */ if (! ChkDesig(nd, D_USED)) return 0; assert(nd->nd_class == Def); df = nd->nd_def; if (!is_type(df) || (df->df_type->tp_fund != T_SET)) { return df_error(nd, "not a SET type", df); } tp = df->df_type; FreeNode(nd); expp->nd_left = 0; } else tp = bitset_type; expp->nd_type = tp; nd = expp->nd_right; /* Now check the elements given, and try to compute a constant set. First allocate room for the set. */ expp->nd_set = MkSet((unsigned)(tp->tp_size)); /* Now check the elements, one by one */ while (nd) { assert(nd->nd_class == Link && nd->nd_symb == ','); if (!ChkElement(&(nd->nd_left), tp, expp->nd_set)) { retval = 0; } if (nd->nd_left) SetIsConstant = 0; nd = nd->nd_right; } if (SetIsConstant) { FreeNode(expp->nd_right); expp->nd_right = 0; } return retval; } STATIC t_node * nextarg(argp, edf) t_node **argp; t_def *edf; { register t_node *arg = (*argp)->nd_right; if (! arg) { return (t_node *) df_error(*argp, "too few arguments supplied", edf); } *argp = arg; return arg->nd_left; } STATIC t_node * getarg(argp, bases, designator, edf) t_node **argp; t_def *edf; { /* This routine is used to fetch the next argument from an argument list. The argument list is indicated by "argp". The parameter "bases" is a bitset indicating which types are allowed at this point, and "designator" is a flag indicating that the address from this argument is taken, so that it must be a designator and may not be a register variable. */ register t_node *left = nextarg(argp, edf); if (! left || ! (designator ? ChkVariable(left, D_USED|D_DEFINED) : ChkExpression(left))) { return 0; } if (designator && left->nd_class==Def) { left->nd_def->df_flags |= D_NOREG; } if (bases) { t_type *tp = BaseType(left->nd_type); if (! designator) MkCoercion(&((*argp)->nd_left), tp); left = (*argp)->nd_left; if (!(tp->tp_fund & bases)) { return (t_node *) df_error(left, "unexpected parameter type", edf); } } return left; } STATIC t_node * getname(argp, kinds, bases, edf) t_node **argp; t_def *edf; { /* Get the next argument from argument list "argp". The argument must indicate a definition, and the definition kind must be one of "kinds". */ register t_node *left = nextarg(argp, edf); if (!left || ! ChkDesig(left, D_USED)) return 0; if (left->nd_class != Def) { return (t_node *)df_error(left, "identifier expected", edf); } if (!(left->nd_def->df_kind & kinds) || (bases && !(left->nd_type->tp_fund & bases))) { return (t_node *) df_error(left, "unexpected parameter type", edf); } return left; } STATIC int ChkProcCall(expp) t_node *expp; { /* Check a procedure call */ register t_node *left; t_def *edf = 0; register t_param *param; int retval = 1; int cnt = 0; left = expp->nd_left; if (left->nd_class == Def) { edf = left->nd_def; } if (left->nd_type == error_type) { /* Just check parameters as if they were value parameters */ while (expp->nd_right) { if (getarg(&expp, 0, 0, edf)) { } } return 0; } expp->nd_type = RemoveEqual(ResultType(left->nd_type)); /* Check parameter list */ for (param = ParamList(left->nd_type); param; param = param->par_next) { if (!(left = getarg(&expp, 0, IsVarParam(param), edf))) { retval = 0; cnt++; continue; } cnt++; if (left->nd_symb == STRING) { TryToString(left, TypeOfParam(param)); } if (! TstParCompat(cnt, RemoveEqual(TypeOfParam(param)), IsVarParam(param), &(expp->nd_left), edf)) { retval = 0; } } if (expp->nd_right) { if (df_error(expp->nd_right,"too many parameters supplied",edf)){ assert(0); } while (expp->nd_right) { if (getarg(&expp, 0, 0, edf)) { } } return 0; } return retval; } int ChkFunCall(expp) register t_node *expp; { /* Check a call that must have a result */ if (! ChkCall(expp)) { expp->nd_type = error_type; return 0; } if (expp->nd_type == 0) { node_error(expp, "function call expected"); expp->nd_type = error_type; return 0; } return 1; } int ChkCall(expp) register t_node *expp; { /* Check something that looks like a procedure or function call. Of course this does not have to be a call at all, it may also be a cast or a standard procedure call. */ register t_node *left = expp->nd_left; STATIC int ChkStandard(); STATIC int ChkCast(); /* First, get the name of the function or procedure */ if (ChkDesig(left, D_USED)) { if (IsCast(left)) { /* It was a type cast. */ return ChkCast(expp); } if (IsProcCall(left) || left->nd_type == error_type) { /* A procedure call. It may also be a call to a standard procedure */ if (left->nd_type == std_type) { /* A standard procedure */ return ChkStandard(expp); } /* Here, we have found a real procedure call. The left hand side may also represent a procedure variable. */ } else { node_error(left, "procedure, type, or function expected"); left->nd_type = error_type; } } return ChkProcCall(expp); } STATIC t_type * ResultOfOperation(operator, tp) t_type *tp; { /* Return the result type of the binary operation "operator", with operand type "tp". */ switch(operator) { case '=': case '#': case GREATEREQUAL: case LESSEQUAL: case '<': case '>': case IN: return bool_type; } return tp; } #define Boolean(operator) (operator == OR || operator == AND) STATIC int AllowedTypes(operator) { /* Return a bit mask indicating the allowed operand types for binary operator "operator". */ switch(operator) { case '+': case '-': case '*': return T_NUMERIC|T_SET; case '/': return T_REAL|T_SET; case DIV: case MOD: return T_INTORCARD; case OR: case AND: return T_ENUMERATION; case '=': case '#': return T_POINTER|T_HIDDEN|T_SET|T_NUMERIC|T_ENUMERATION|T_CHAR; case GREATEREQUAL: case LESSEQUAL: return T_SET|T_NUMERIC|T_CHAR|T_ENUMERATION; case '<': case '>': return T_NUMERIC|T_CHAR|T_ENUMERATION; default: crash("(AllowedTypes)"); } /*NOTREACHED*/ } STATIC int ChkAddressOper(tpl, tpr, expp) register t_type *tpl, *tpr; register t_node *expp; { /* Check that either "tpl" or "tpr" are both of type address_type, or that one of them is, but the other is of a cardinal type. Also insert proper coercions, making sure that the EM pointer arithmetic instructions can be generated whenever possible */ if (tpr == address_type && expp->nd_symb == '+') { /* use the fact that '+' is a commutative operator */ t_type *tmptype = tpr; t_node *tmpnode = expp->nd_right; tpr = tpl; expp->nd_right = expp->nd_left; tpl = tmptype; expp->nd_left = tmpnode; } if (tpl == address_type) { expp->nd_type = address_type; if (tpr == address_type) { return 1; } if (tpr->tp_fund & T_CARDINAL) { MkCoercion(&(expp->nd_right), expp->nd_symb=='+' || expp->nd_symb=='-' ? tpr : address_type); return 1; } return 0; } if (tpr == address_type && tpl->tp_fund & T_CARDINAL) { expp->nd_type = address_type; MkCoercion(&(expp->nd_left), address_type); return 1; } return 0; } STATIC int ChkBinOper(expp) register t_node *expp; { /* Check a binary operation. */ register t_node *left = expp->nd_left, *right = expp->nd_right; register t_type *tpl, *tpr; t_type *result_type; int allowed; int retval; /* First, check BOTH operands */ retval = ChkExpression(left) & ChkExpression(right); tpl = BaseType(left->nd_type); tpr = BaseType(right->nd_type); if (tpl == intorcard_type) { if (tpr == int_type || tpr == card_type) { left->nd_type = tpl = tpr; } } if (tpr == intorcard_type) { if (tpl == int_type || tpl == card_type) { right->nd_type = tpr = tpl; } } expp->nd_type = result_type = ResultOfOperation(expp->nd_symb, tpr); /* Check that the application of the operator is allowed on the type of the operands. There are three tricky parts: - Boolean operators are only allowed on boolean operands, but the "allowed-mask" of "AllowedTypes" can only indicate an enumeration type. - All operations that are allowed on CARDINALS are also allowed on ADDRESS. - The IN-operator has as right-hand-size operand a set. */ if (expp->nd_symb == IN) { if (tpr->tp_fund != T_SET) { return ex_error(expp, "right operand must be a set"); } if (!TstAssCompat(ElementType(tpr), tpl)) { /* Assignment compatible ??? I don't know! Should we be allowed to check if a INTEGER is a member of a BITSET??? */ node_error(left, "type incompatibility in IN"); return 0; } MkCoercion(&(expp->nd_left), word_type); left = expp->nd_left; if (left->nd_class == Value && right->nd_class == Set) { cstset(expp); } return retval; } if (!retval) return 0; allowed = AllowedTypes(expp->nd_symb); if (!(tpr->tp_fund & allowed) || !(tpl->tp_fund & allowed)) { if (!((T_CARDINAL & allowed) && ChkAddressOper(tpl, tpr, expp))) { return ex_error(expp, "illegal operand type(s)"); } if (result_type == bool_type) expp->nd_type = bool_type; } else { if (Boolean(expp->nd_symb) && tpl != bool_type) { return ex_error(expp, "illegal operand type(s)"); } /* Operands must be compatible (distilled from Def 8.2) */ if (!TstCompat(tpr, tpl)) { return ex_error(expp, "incompatible operand types"); } MkCoercion(&(expp->nd_left), tpl); MkCoercion(&(expp->nd_right), tpr); } if (tpl->tp_fund == T_SET) { if (left->nd_class == Set && right->nd_class == Set) { cstset(expp); } } else if ( tpl->tp_fund != T_REAL && left->nd_class == Value && right->nd_class == Value) { if (expp->nd_left->nd_type->tp_fund == T_INTEGER) { cstibin(expp); } else cstubin(expp); } return 1; } STATIC int ChkUnOper(expp) register t_node *expp; { /* Check an unary operation. */ register t_node *right = expp->nd_right; register t_type *tpr; if (expp->nd_symb == COERCION) return 1; if (expp->nd_symb == '(') { *expp = *right; free_node(right); return ChkExpression(expp); } expp->nd_type = error_type; if (! ChkExpression(right)) return 0; expp->nd_type = tpr = BaseType(right->nd_type); MkCoercion(&(expp->nd_right), tpr); right = expp->nd_right; if (tpr == address_type) tpr = card_type; switch(expp->nd_symb) { case '+': if (!(tpr->tp_fund & T_NUMERIC)) break; *expp = *right; free_node(right); return 1; case '-': if (tpr->tp_fund == T_INTORCARD || tpr->tp_fund == T_INTEGER) { if (tpr == intorcard_type) { expp->nd_type = int_type; } if (right->nd_class == Value) { cstunary(expp); } return 1; } else if (tpr->tp_fund == T_REAL) { if (right->nd_class == Value) { *expp = *right; if (*(expp->nd_REL) == '-') (expp->nd_REL)++; else (expp->nd_REL)--; FreeNode(right); } return 1; } break; case NOT: if (tpr == bool_type) { if (right->nd_class == Value) { cstunary(expp); } return 1; } break; default: crash("ChkUnOper"); } return ex_error(expp, "illegal operand type"); } STATIC t_node * getvariable(argp, edf, flags) t_node **argp; t_def *edf; { /* Get the next argument from argument list "argp". It must obey the rules of "ChkVariable". */ register t_node *left = nextarg(argp, edf); if (!left || !ChkVariable(left, flags)) return 0; return left; } STATIC int ChkStandard(expp) register t_node *expp; { /* Check a call of a standard procedure or function */ t_node *arg = expp; register t_node *left = expp->nd_left; register t_def *edf = left->nd_def; t_type *basetype; int free_it = 0; assert(left->nd_class == Def); expp->nd_type = error_type; switch(edf->df_value.df_stdname) { case S_ABS: if (!(left = getarg(&arg, T_NUMERIC, 0, edf))) return 0; basetype = BaseType(left->nd_type); MkCoercion(&(arg->nd_left), basetype); left = arg->nd_left; expp->nd_type = left->nd_type; if (left->nd_class == Value && expp->nd_type->tp_fund != T_REAL) { cstcall(expp, S_ABS); } else if (basetype->tp_fund != T_INTEGER && basetype->tp_fund != T_REAL) { free_it = 1; } break; case S_CAP: expp->nd_type = char_type; if (!(left = getarg(&arg, T_CHAR, 0, edf))) return 0; if (left->nd_class == Value) cstcall(expp, S_CAP); break; case S_CHR: expp->nd_type = char_type; if (!(left = getarg(&arg, T_INTORCARD, 0, edf))) return 0; MkCoercion(&(arg->nd_left), char_type); free_it = 1; break; case S_FLOATD: case S_FLOAT: if (! getarg(&arg, T_INTORCARD, 0, edf)) return 0; if (edf->df_value.df_stdname == S_FLOAT) { MkCoercion(&(arg->nd_left), card_type); } MkCoercion(&(arg->nd_left), edf->df_value.df_stdname == S_FLOATD ? longreal_type : real_type); free_it = 1; break; case S_SHORT: case S_LONG: { t_type *tp; t_type *s1, *s2, *d1, *d2; if (edf->df_value.df_stdname == S_SHORT) { s1 = longint_type; d1 = int_type; s2 = longreal_type; d2 = real_type; } else { d1 = longint_type; s1 = int_type; d2 = longreal_type; s2 = real_type; } if (!(left = getarg(&arg, 0, 0, edf))) { return 0; } tp = BaseType(left->nd_type); if (tp == s1) { MkCoercion(&(arg->nd_left), d1); } else if (tp == s2) { MkCoercion(&(arg->nd_left), d2); } else { if (df_error(left, "unexpected parameter type", edf)) { assert(0); } break; } free_it = 1; break; } case S_HIGH: if (!(left = getarg(&arg, T_ARRAY|T_STRING|T_CHAR, 0, edf))) { return 0; } if (left->nd_type->tp_fund == T_ARRAY) { expp->nd_type = IndexType(left->nd_type); if (! IsConformantArray(left->nd_type)) { left->nd_type = expp->nd_type; cstcall(expp, S_MAX); } break; } if (left->nd_symb != STRING) { return df_error(left,"array parameter expected", edf); } expp->nd_type = card_type; expp->nd_class = Value; /* Notice that we could disallow HIGH("") here by checking that left->nd_type->tp_fund != T_CHAR || left->nd_INT != 0. ??? For the time being, we don't. !!! Maybe the empty string should not be allowed at all. */ expp->nd_INT = left->nd_type->tp_fund == T_CHAR ? 0 : left->nd_SLE - 1; expp->nd_symb = INTEGER; break; case S_MAX: case S_MIN: if (!(left = getname(&arg, D_ISTYPE, T_DISCRETE, edf))) { return 0; } expp->nd_type = left->nd_type; cstcall(expp,edf->df_value.df_stdname); break; case S_ODD: if (! (left = getarg(&arg, T_INTORCARD, 0, edf))) return 0; MkCoercion(&(arg->nd_left), BaseType(left->nd_type)); expp->nd_type = bool_type; if (arg->nd_left->nd_class == Value) cstcall(expp, S_ODD); break; case S_ORD: if (! getarg(&arg, T_DISCRETE, 0, edf)) return 0; MkCoercion(&(arg->nd_left), card_type); free_it = 1; break; #ifndef STRICT_3RD_ED case S_NEW: case S_DISPOSE: { static int warning_given = 0; if (!warning_given) { warning_given = 1; if (! options['3']) node_warning(expp, W_OLDFASHIONED, "NEW and DISPOSE are obsolete"); else node_error(expp, "NEW and DISPOSE are obsolete"); } } left = getvariable(&arg, edf, edf->df_value.df_stdname == S_NEW ? D_DEFINED : D_USED); expp->nd_type = 0; if (! left) return 0; if (! (left->nd_type->tp_fund == T_POINTER)) { return df_error(left, "pointer variable expected", edf); } /* Now, make it look like a call to ALLOCATE or DEALLOCATE */ { t_token dt; t_node *nd; dt.TOK_INT = PointedtoType(left->nd_type)->tp_size; dt.tk_symb = INTEGER; dt.tk_lineno = left->nd_lineno; nd = MkLeaf(Value, &dt); nd->nd_type = card_type; dt.tk_symb = ','; arg->nd_right = MkNode(Link, nd, NULLNODE, &dt); /* Ignore other arguments to NEW and/or DISPOSE ??? */ dt.tk_symb = IDENT; dt.tk_lineno = expp->nd_left->nd_lineno; FreeNode(expp->nd_left); dt.TOK_IDF = str2idf(edf->df_value.df_stdname==S_NEW ? "ALLOCATE" : "DEALLOCATE", 0); expp->nd_left = MkLeaf(Name, &dt); } return ChkCall(expp); #endif case S_TSIZE: /* ??? */ case S_SIZE: expp->nd_type = intorcard_type; if (!(left = getname(&arg,D_FIELD|D_VARIABLE|D_ISTYPE,0,edf))) { return 0; } if (! IsConformantArray(left->nd_type)) cstcall(expp, S_SIZE); #ifndef NOSTRICT else node_warning(expp, W_STRICT, "%s on conformant array", expp->nd_left->nd_def->df_idf->id_text); #endif break; case S_TRUNCD: case S_TRUNC: expp->nd_type = card_type; if (edf->df_value.df_stdname == S_TRUNCD) { expp->nd_type = longint_type; } if (! getarg(&arg, T_REAL, 0, edf)) return 0; MkCoercion(&(arg->nd_left), expp->nd_type); free_it = 1; break; case S_VAL: if (!(left = getname(&arg, D_ISTYPE, T_DISCRETE, edf))) { return 0; } expp->nd_type = left->nd_def->df_type; expp->nd_right = arg->nd_right; arg->nd_right = 0; FreeNode(arg); arg = expp; if (!(left = getarg(&arg, T_INTORCARD, 0, edf))) return 0; MkCoercion(&(arg->nd_left), expp->nd_type); free_it = 1; break; case S_ADR: expp->nd_type = address_type; if (! getarg(&arg, 0, 1, edf)) return 0; break; case S_DEC: case S_INC: expp->nd_type = 0; if (! (left = getvariable(&arg, edf, D_USED|D_DEFINED))) return 0; if (! (left->nd_type->tp_fund & T_DISCRETE)) { return df_error(left,"illegal parameter type", edf); } if (arg->nd_right) { if (! getarg(&arg, T_INTORCARD, 0, edf)) return 0; } break; case S_HALT: expp->nd_type = 0; break; case S_EXCL: case S_INCL: { register t_type *tp; t_node *dummy; expp->nd_type = 0; if (!(left = getvariable(&arg, edf, D_USED|D_DEFINED))) return 0; tp = left->nd_type; if (tp->tp_fund != T_SET) { return df_error(arg, "SET parameter expected", edf); } if (!(dummy = getarg(&arg, 0, 0, edf))) return 0; if (!ChkAssCompat(&dummy, ElementType(tp), "EXCL/INCL")) { /* What type of compatibility do we want here? apparently assignment compatibility! ??? ??? But we don't want the coercion in the tree, because we don't want a range check here. We want a SET error. */ return 0; } MkCoercion(&(arg->nd_left), word_type); break; } default: crash("(ChkStandard)"); } if (arg->nd_right) { return df_error(arg->nd_right, "too many parameters supplied", edf); } if (free_it) { FreeNode(expp->nd_left); *expp = *(arg->nd_left); arg->nd_left = 0; FreeNode(arg); } return 1; } STATIC int ChkCast(expp) register t_node *expp; { /* Check a cast and perform it if the argument is constant. If the sizes don't match, only complain if at least one of them has a size larger than the word size. If both sizes are equal to or smaller than the word size, there is no problem as such values take a word on the EM stack anyway. */ register t_node *arg = expp->nd_right; register t_type *lefttype = expp->nd_left->nd_type; t_def *df = expp->nd_left->nd_def; if ((! arg) || arg->nd_right) { return df_error(expp, "type cast must have 1 parameter", df); } if (! ChkExpression(arg->nd_left)) return 0; MkCoercion(&(arg->nd_left), BaseType(arg->nd_left->nd_type)); arg = arg->nd_left; if (arg->nd_type->tp_size != lefttype->tp_size && (arg->nd_type->tp_size > word_size || lefttype->tp_size > word_size)) { return df_error(expp, "unequal sizes in type cast", df); } if (IsConformantArray(arg->nd_type)) { return df_error(expp, "type transfer function on conformant array not supported", df); } if (arg->nd_class == Value) { expp->nd_right->nd_left = 0; FreeLR(expp); *expp = *arg; } expp->nd_type = lefttype; return 1; } TryToString(nd, tp) register t_node *nd; t_type *tp; { /* Try a coercion from character constant to string. */ static char buf[2]; assert(nd->nd_symb == STRING); if (tp->tp_fund == T_ARRAY && nd->nd_type == char_type) { buf[0] = nd->nd_INT; nd->nd_type = standard_type(T_STRING, 1, (arith) 2); nd->nd_token.tk_data.tk_str = (struct string *) Malloc(sizeof(struct string)); nd->nd_STR = Salloc(buf, 2); nd->nd_SLE = 1; } } STATIC int no_desig(expp) t_node *expp; { node_error(expp, "designator expected"); return 0; } STATIC int done_before() { return 1; } extern int NodeCrash(); int (*ExprChkTable[])() = { #ifdef DEBUG ChkValue, #else done_before, #endif ChkArr, ChkBinOper, ChkUnOper, ChkArrow, ChkFunCall, ChkExLinkOrName, NodeCrash, ChkSet, done_before, NodeCrash, ChkExLinkOrName, NodeCrash }; int (*DesigChkTable[])() = { no_desig, ChkArr, no_desig, no_desig, ChkArrow, no_desig, ChkLinkOrName, NodeCrash, no_desig, done_before, NodeCrash, ChkLinkOrName, NodeCrash };