IMPLEMENTATION MODULE Mathlib; FROM EM IMPORT FIF, FEF; (* From: Handbook of Mathematical Functions Edited by M. Abramowitz and I.A. Stegun National Bureau of Standards Applied Mathematics Series 55 *) CONST OneRadianInDegrees = 57.295779513082320876798155D; OneDegreeInRadians = 0.017453292519943295769237D; (* basic functions *) PROCEDURE pow(x: REAL; i: INTEGER): REAL; BEGIN RETURN SHORT(longpow(LONG(x), i)); END pow; PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL; VAR val: LONGREAL; ri: LONGREAL; BEGIN ri := FLOATD(i); IF x < 0.0D THEN val := longexp(longln(-x) * ri); IF ODD(i) THEN RETURN -val; ELSE RETURN val; END; ELSIF x = 0.0D THEN RETURN 0.0D; ELSE RETURN longexp(longln(x) * ri); END; END longpow; PROCEDURE sqrt(x: REAL): REAL; BEGIN RETURN SHORT(longsqrt(LONG(x))); END sqrt; PROCEDURE longsqrt(x: LONGREAL): LONGREAL; VAR temp: LONGREAL; exp, i: INTEGER; BEGIN IF x <= 0.0D THEN IF x < 0.0D THEN (* ??? *) ; END; RETURN 0.0D; END; temp := FEF(x,exp); (* * NOTE * this wont work on 1's comp *) IF ODD(exp) THEN temp := 2.0D * temp; DEC(exp); END; temp := 0.5D*(1.0D + temp); WHILE exp > 28 DO temp := temp * 16384.0D; exp := exp - 28; END; WHILE exp < -28 DO temp := temp / 16384.0D; exp := exp + 28; END; WHILE exp >= 2 DO temp := temp * 2.0D; exp := exp - 2; END; WHILE exp <= -2 DO temp := temp / 2.0D; exp := exp + 2; END; FOR i := 0 TO 4 DO temp := 0.5D*(temp + x/temp); END; RETURN temp; END longsqrt; PROCEDURE exp(x: REAL): REAL; BEGIN RETURN SHORT(longexp(LONG(x))); END exp; PROCEDURE longexp(x: LONGREAL): LONGREAL; (* * n = floor(x / ln2), d = x / ln2 - n * exp(x) = exp((x / ln2) * ln2) = exp((n + d) * ln2) = * exp(n * ln2) * exp(d * ln2) = 2 ** n * exp(d * ln2) *) CONST a1 = -0.9999999995D; a2 = 0.4999999206D; a3 = -0.1666653019D; a4 = 0.0416573475D; a5 = -0.0083013598D; a6 = 0.0013298820D; a7 = -0.0001413161D; VAR neg: BOOLEAN; polval: LONGREAL; n: LONGREAL; n1 : INTEGER; BEGIN neg := x < 0.0D; IF neg THEN x := -x; END; x := FIF(x, 1.0D/LONG(ln2), n) * LONG(ln2); polval := 1.0D /(1.0D + x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7))))))); n1 := TRUNCD(n + 0.5D); WHILE n1 >= 16 DO polval := polval * 65536.0D; n1 := n1 - 16; END; WHILE n1 > 0 DO polval := polval * 2.0D; DEC(n1); END; IF neg THEN RETURN 1.0D/polval; END; RETURN polval; END longexp; PROCEDURE ln(x: REAL): REAL; (* natural log *) BEGIN RETURN SHORT(longln(LONG(x))); END ln; PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *) CONST a1 = 0.9999964239D; a2 = -0.4998741238D; a3 = 0.3317990258D; a4 = -0.2407338084D; a5 = 0.1676540711D; a6 = -0.0953293897D; a7 = 0.0360884937D; a8 = -0.0064535442D; VAR exp: INTEGER; polval: LONGREAL; BEGIN IF x <= 0.0D THEN (* ??? *) RETURN 0.0D; END; x := FEF(x, exp); WHILE x < 1.0D DO x := x + x; DEC(exp); END; x := x - 1.0D; polval := x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*(a7+a8*x))))))); RETURN polval + FLOATD(exp) * LONG(ln2); END longln; PROCEDURE log(x: REAL): REAL; (* log with base 10 *) BEGIN RETURN SHORT(longlog(LONG(x))); END log; PROCEDURE longlog(x: LONGREAL): LONGREAL; (* log with base 10 *) BEGIN RETURN longln(x)/LONG(ln10); END longlog; (* trigonometric functions; arguments in radians *) PROCEDURE sin(x: REAL): REAL; BEGIN RETURN SHORT(longsin(LONG(x))); END sin; PROCEDURE longsin(x: LONGREAL): LONGREAL; CONST a2 = -0.1666666664D; a4 = 0.0083333315D; a6 = -0.0001984090D; a8 = 0.0000027526D; a10 = -0.0000000239D; VAR xsqr: LONGREAL; neg: BOOLEAN; BEGIN neg := FALSE; IF x < 0.0D THEN neg := TRUE; x := -x; END; x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi); IF x >= LONG(pi) THEN neg := NOT neg; x := x - LONG(pi); END; IF x > LONG(halfpi) THEN x := LONG(pi) - x; END; xsqr := x * x; x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10))))); IF neg THEN RETURN -x; END; RETURN x; END longsin; PROCEDURE cos(x: REAL): REAL; BEGIN RETURN SHORT(longcos(LONG(x))); END cos; PROCEDURE longcos(x: LONGREAL): LONGREAL; CONST a2 = -0.4999999963D; a4 = 0.0416666418D; a6 = -0.0013888397D; a8 = 0.0000247609D; a10 = -0.0000002605D; VAR xsqr: LONGREAL; neg: BOOLEAN; BEGIN neg := FALSE; IF x < 0.0D THEN x := -x; END; x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi); IF x >= LONG(pi) THEN x := LONG(twicepi) - x; END; IF x > LONG(halfpi) THEN neg := NOT neg; x := LONG(pi) - x; END; xsqr := x * x; x := 1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10)))); IF neg THEN RETURN -x; END; RETURN x; END longcos; PROCEDURE tan(x: REAL): REAL; BEGIN RETURN SHORT(longtan(LONG(x))); END tan; PROCEDURE longtan(x: LONGREAL): LONGREAL; VAR cosinus: LONGREAL; BEGIN cosinus := longcos(x); IF cosinus = 0.0D THEN (* ??? *) RETURN 0.0D; END; RETURN longsin(x)/cosinus; END longtan; PROCEDURE arcsin(x: REAL): REAL; BEGIN RETURN SHORT(longarcsin(LONG(x))); END arcsin; PROCEDURE longarcsin(x: LONGREAL): LONGREAL; CONST a0 = 1.5707963050D; a1 = -0.2145988016D; a2 = 0.0889789874D; a3 = -0.0501743046D; a4 = 0.0308918810D; a5 = -0.0170881256D; a6 = 0.0066700901D; a7 = -0.0012624911D; BEGIN IF x < 0.0D THEN x := -x; END; IF x > 1.0D THEN (* ??? *) RETURN 0.0D; END; RETURN LONG(halfpi) - longsqrt(1.0D - x)*(a0+x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7))))))); END longarcsin; PROCEDURE arccos(x: REAL): REAL; BEGIN RETURN SHORT(longarccos(LONG(x))); END arccos; PROCEDURE longarccos(x: LONGREAL): LONGREAL; BEGIN RETURN LONG(halfpi) - longarcsin(x); END longarccos; PROCEDURE arctan(x: REAL): REAL; BEGIN RETURN SHORT(longarctan(LONG(x))); END arctan; PROCEDURE longarctan(x: LONGREAL): LONGREAL; CONST a2 = -0.3333314528D; a4 = 0.1999355085D; a6 = -0.1420889944D; a8 = 0.1065626393D; a10 = -0.0752896400D; a12 = 0.0429096318D; a14 = -0.0161657367D; a16 = 0.0028662257D; VAR xsqr: LONGREAL; rev: BOOLEAN; neg: BOOLEAN; BEGIN rev := FALSE; neg := FALSE; IF x < 0.0D THEN neg := TRUE; x := -x; END; IF x > 1.0D THEN rev := TRUE; x := 1.0D / x; END; xsqr := x * x; x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*(a10+xsqr*(a12+xsqr*(a14+xsqr*a16)))))))); IF rev THEN x := LONG(quartpi) - x; END; IF neg THEN RETURN -x; END; RETURN x; END longarctan; (* hyperbolic functions *) PROCEDURE sinh(x: REAL): REAL; BEGIN RETURN SHORT(longsinh(LONG(x))); END sinh; PROCEDURE longsinh(x: LONGREAL): LONGREAL; VAR expx: LONGREAL; BEGIN expx := longexp(x); RETURN (expx - 1.0D/expx)/2.0D; END longsinh; PROCEDURE cosh(x: REAL): REAL; BEGIN RETURN SHORT(longcosh(LONG(x))); END cosh; PROCEDURE longcosh(x: LONGREAL): LONGREAL; VAR expx: LONGREAL; BEGIN expx := longexp(x); RETURN (expx + 1.0D/expx)/2.0D; END longcosh; PROCEDURE tanh(x: REAL): REAL; BEGIN RETURN SHORT(longtanh(LONG(x))); END tanh; PROCEDURE longtanh(x: LONGREAL): LONGREAL; VAR expx: LONGREAL; BEGIN expx := longexp(x); RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx); END longtanh; PROCEDURE arcsinh(x: REAL): REAL; BEGIN RETURN SHORT(longarcsinh(LONG(x))); END arcsinh; PROCEDURE longarcsinh(x: LONGREAL): LONGREAL; VAR neg: BOOLEAN; BEGIN neg := FALSE; IF x < 0.0D THEN neg := TRUE; x := -x; END; x := longln(x + longsqrt(x*x+1.0D)); IF neg THEN RETURN -x; END; RETURN x; END longarcsinh; PROCEDURE arccosh(x: REAL): REAL; BEGIN RETURN SHORT(longarccosh(LONG(x))); END arccosh; PROCEDURE longarccosh(x: LONGREAL): LONGREAL; BEGIN IF x < 1.0D THEN (* ??? *) RETURN 0.0D; END; RETURN longln(x + longsqrt(x*x - 1.0D)); END longarccosh; PROCEDURE arctanh(x: REAL): REAL; BEGIN RETURN SHORT(longarctanh(LONG(x))); END arctanh; PROCEDURE longarctanh(x: LONGREAL): LONGREAL; BEGIN IF (x <= -1.0D) OR (x >= 1.0D) THEN (* ??? *) RETURN 0.0D; END; RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D; END longarctanh; (* conversions *) PROCEDURE RadianToDegree(x: REAL): REAL; BEGIN RETURN SHORT(longRadianToDegree(LONG(x))); END RadianToDegree; PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL; BEGIN RETURN x * OneRadianInDegrees; END longRadianToDegree; PROCEDURE DegreeToRadian(x: REAL): REAL; BEGIN RETURN SHORT(longDegreeToRadian(LONG(x))); END DegreeToRadian; PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL; BEGIN RETURN x * OneDegreeInRadians; END longDegreeToRadian; END Mathlib.