{ $Header$ } procedure machar (var ibeta , it , irnd , ngrd , machep , negep , iexp, minexp , maxexp : integer ; var eps , epsneg , xmin , xmax : real ) ; var trapped:boolean; procedure encaps(procedure p; procedure q(i:integer)); extern; procedure trap(i:integer); extern; procedure catch(i:integer); const underflo=5; begin if i=underflo then trapped:=true else trap(i) end; procedure work; var { This subroutine is intended to determine the characteristics of the floating-point arithmetic system that are specified below. The first three are determined according to an algorithm due to M. Malcolm, CACM 15 (1972), pp. 949-951, incorporating some, but not all, of the improvements suggested by M. Gentleman and S. Marovich, CACM 17 (1974), pp. 276-277. The version given here is for single precision. Latest revision - October 1, 1976. Author - W. J. Cody Argonne National Laboratory Revised for Pascal - R. A. Freak University of Tasmania Hobart Tasmania ibeta is the radix of the floating-point representation it is the number of base ibeta digits in the floating-point significand irnd = 0 if the arithmetic chops, 1 if the arithmetic rounds ngrd = 0 if irnd=1, or if irnd=0 and only it base ibeta digits participate in the post normalization shift of the floating-point significand in multiplication 1 if irnd=0 and more than it base ibeta digits participate in the post normalization shift of the floating-point significand in multiplication machep is the exponent on the smallest positive floating-point number eps such that 1.0+eps <> 1.0 negeps is the exponent on the smallest positive fl. pt. no. negeps such that 1.0-negeps <> 1.0, except that negeps is bounded below by it-3 iexp is the number of bits (decimal places if ibeta = 10) reserved for the representation of the exponent of a floating-point number minexp is the exponent of the smallest positive fl. pt. no. xmin maxexp is the exponent of the largest finite floating-point number xmax eps is the smallest positive floating-point number such that 1.0+eps <> 1.0. in particular, eps = ibeta**machep epsneg is the smallest positive floating-point number such that 1.0-eps <> 1.0 (except that the exponent negeps is bounded below by it-3). in particular epsneg = ibeta**negep xmin is the smallest positive floating-point number. in particular, xmin = ibeta ** minexp xmax is the largest finite floating-point number. in particular xmax = (1.0-epsneg) * ibeta ** maxexp note - on some machines xmax will be only the second, or perhaps third, largest number, being too small by 1 or 2 units in the last digit of the significand. } i , iz , j , k , mx : integer ; a , b , beta , betain , betam1 , one , y , z , zero : real ; begin irnd := 1 ; one := ( irnd ); a := one + one ; b := a ; zero := 0.0 ; { determine ibeta,beta ala Malcolm } while ( ( ( a + one ) - a ) - one = zero ) do begin a := a + a ; end ; while ( ( a + b ) - a = zero ) do begin b := b + b ; end ; ibeta := trunc ( ( a + b ) - a ); beta := ( ibeta ); betam1 := beta - one ; { determine irnd,ngrd,it } if ( ( a + betam1 ) - a = zero ) then irnd := 0 ; it := 0 ; a := one ; repeat begin it := it + 1 ; a := a * beta ; end until ( ( ( a + one ) - a ) - one <> zero ) ; { determine negep, epsneg } negep := it + 3 ; a := one ; for i := 1 to negep do begin a := a / beta ; end ; while ( ( one - a ) - one = zero ) do begin a := a * beta ; negep := negep - 1 ; end ; negep := - negep ; epsneg := a ; { determine machep, eps } machep := negep ; while ( ( one + a ) - one = zero ) do begin a := a * beta ; machep := machep + 1 ; end ; eps := a ; { determine ngrd } ngrd := 0 ; if(( irnd = 0) and((( one + eps) * one - one) <> zero)) then ngrd := 1 ; { determine iexp, minexp, xmin loop to determine largest i such that (1/beta) ** (2**(i)) does not underflow exit from loop is signall by an underflow } i := 0 ; betain := one / beta ; z := betain ; trapped:=false; repeat begin y := z ; z := y * y ; { check for underflow } i := i + 1 ; end until trapped; i := i - 1; k := 1 ; { determine k such that (1/beta)**k does not underflow first set k = 2 ** i } for j := 1 to i do begin k := k + k ; end ; iexp := i + 1 ; mx := k + k ; if ( ibeta = 10 ) then begin { for decimal machines only } iexp := 2 ; iz := ibeta ; while ( k >= iz ) do begin iz := iz * ibeta ; iexp := iexp + 1 ; end ; mx := iz + iz - 1 ; end; trapped:=false; repeat begin { loop to construct xmin exit from loop is signalled by an underflow } xmin := y ; y := y * betain ; k := k + 1 ; end until trapped; k := k - 1; minexp := - k ; { determine maxexp, xmax } if ( ( mx <= k + k - 3 ) and ( ibeta <> 10 ) ) then begin mx := mx + mx ; iexp := iexp + 1 ; end; maxexp := mx + minexp ; { adjust for machines with implicit leading bit in binary significand and machines with radix point at extreme right of significand } i := maxexp + minexp ; if ( ( ibeta = 2 ) and ( i = 0 ) ) then maxexp := maxexp - 1 ; if ( i > 20 ) then maxexp := maxexp - 3 ; xmax := one - epsneg ; if ( xmax * one <> xmax ) then xmax := one - beta * epsneg ; xmax := ( xmax * betain * betain * betain ) / xmin ; i := maxexp + minexp + 3 ; if ( i > 0 ) then begin for j := 1 to i do begin xmax := xmax * beta ; end ; end; end; begin trapped:=false; encaps(work,catch); end;