/* * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands. * See the copyright notice in the ACK home directory, in the file "Copyright". * * Author: Ceriel J.H. Jacobs */ /* C O N S T A N T E X P R E S S I O N H A N D L I N G */ /* $Id$ */ #include #include "parameters.h" #include "debug.h" #include #include #include #include #include "idf.h" #include "type.h" #include "LLlex.h" #include "node.h" #include "Lpars.h" #include "standards.h" #include "warning.h" extern char *symbol2str(); #define arith_sign ((arith) 1 << (sizeof(arith) * 8 - 1)) #ifndef NOCROSS arith full_mask[MAXSIZE+1];/* full_mask[1] == 0xFF, full_mask[2] == 0xFFFF, .. */ arith max_int[MAXSIZE+1]; /* max_int[1] == 0x7F, max_int[2] == 0x7FFF, .. */ arith min_int[MAXSIZE+1]; /* min_int[1] == 0xFFFFFF80, min_int[2] = 0xFFFF8000, ... */ unsigned int wrd_bits; /* number of bits in a word */ #else arith full_mask[] = { 0L, 0xFFL, 0xFFFFL, 0L, 0xFFFFFFFFL }; arith max_int[] = { 0L, 0x7FL, 0x7FFFL, 0L, 0x7FFFFFFFL }; arith min_int[] = { 0L, -128L, -32768L, 0L, -2147483647L-1 }; #endif extern char options[]; void CutSize(); overflow(expp) t_node *expp; { if (expp->nd_type != address_type) { node_warning(expp, W_ORDINARY, "overflow in constant expression"); } } STATIC commonbin(expp) t_node **expp; { register t_node *exp = *expp; t_type *tp = exp->nd_type; register t_node *right = exp->nd_RIGHT; exp->nd_RIGHT = 0; FreeNode(exp); *expp = right; right->nd_type = tp; } cstunary(expp) t_node **expp; { /* The unary operation in "expp" is performed on the constant expression below it, and the result restored in expp. */ register t_node *exp = *expp; register t_node *right = exp->nd_RIGHT; register arith o1 = right->nd_INT; switch(exp->nd_symb) { /* Should not get here case '+': break; */ case '-': if (! options['s'] && o1 == min_int[(int)(right->nd_type->tp_size)]) { overflow(exp); } o1 = -o1; break; case NOT: case '~': o1 = !o1; break; default: crash("(cstunary)"); } commonbin(expp); (*expp)->nd_INT = o1; CutSize(*expp); } STATIC divide(pdiv, prem) arith *pdiv, *prem; { /* Unsigned divide *pdiv by *prem, and store result in *pdiv, remainder in *prem */ register arith o1 = *pdiv; register arith o2 = *prem; *pdiv = (unsigned arith) o1 / (unsigned arith) o2; *prem = (unsigned arith) o1 % (unsigned arith) o2; } void cstibin(expp) t_node **expp; { /* The binary operation in "expp" is performed on the constant expressions below it, and the result restored in expp. This version is for INTEGER expressions. */ register t_node *exp = *expp; register arith o1 = exp->nd_LEFT->nd_INT; register arith o2 = exp->nd_RIGHT->nd_INT; register int sz = exp->nd_type->tp_size; assert(exp->nd_class == Oper); assert(exp->nd_LEFT->nd_class == Value); assert(exp->nd_RIGHT->nd_class == Value); switch (exp->nd_symb) { case '*': if (o1 > 0) { if (o2 > 0) { if (max_int[sz] / o1 < o2) overflow(exp); } else if (min_int[sz] / o1 > o2) overflow(exp); } else if (o1 < 0) { if (o2 < 0) { if (o1 == min_int[sz] || o2 == min_int[sz] || max_int[sz] / (-o1) < (-o2)) overflow(exp); } else if (o2 > 0) { if (min_int[sz] / o2 > o1) overflow(exp); } } o1 *= o2; break; case DIV: if (o2 == 0) { node_error(exp, "division by 0"); return; } if ((o1 < 0) != (o2 < 0)) { if (o1 < 0) o1 = -o1; else o2 = -o2; o1 = -((o1+o2-1)/o2); } else o1 /= o2; break; case MOD: if (o2 == 0) { node_error(exp, "modulo by 0"); return; } { arith m = o1 % o2; if (m != 0 && (o1 < 0) != (o2 < 0)) o1 = m + o2; else o1 = m; } break; case '+': if ( (o1 > 0 && o2 > 0 && max_int[sz] - o1 < o2) || (o1 < 0 && o2 < 0 && min_int[sz] - o1 > o2) ) overflow(exp); o1 += o2; break; case '-': if ( (o1 >= 0 && o2 < 0 && max_int[sz] + o2 < o1) || (o1 < 0 && o2 >= 0 && min_int[sz] + o2 > o1) ) overflow(exp); o1 -= o2; break; case '<': o1 = (o1 < o2); break; case '>': o1 = (o1 > o2); break; case LESSEQUAL: o1 = (o1 <= o2); break; case GREATEREQUAL: o1 = (o1 >= o2); break; case '=': o1 = (o1 == o2); break; case '#': o1 = (o1 != o2); break; default: crash("(cstibin)"); } commonbin(expp); (*expp)->nd_INT = o1; CutSize(*expp); } cstfbin(expp) t_node **expp; { /* The binary operation in "expp" is performed on the constant expressions below it, and the result restored in expp. This version is for REAL expressions. */ register t_node *exp = *expp; register struct real *p = exp->nd_LEFT->nd_REAL; register flt_arith *o1 = &p->r_val; register flt_arith *o2 = &exp->nd_RIGHT->nd_RVAL; int compar = 0; int cmpval = 0; assert(exp->nd_class == Oper); assert(exp->nd_LEFT->nd_class == Value); assert(exp->nd_RIGHT->nd_class == Value); switch (exp->nd_symb) { case '*': flt_mul(o1, o2, o1); break; case '/': flt_div(o1, o2, o1); break; case '+': flt_add(o1, o2, o1); break; case '-': flt_sub(o1, o2, o1); break; case '<': case '>': case LESSEQUAL: case GREATEREQUAL: case '=': case '#': compar++; cmpval = flt_cmp(o1, o2); switch(exp->nd_symb) { case '<': cmpval = (cmpval < 0); break; case '>': cmpval = (cmpval > 0); break; case LESSEQUAL: cmpval = (cmpval <= 0); break; case GREATEREQUAL: cmpval = (cmpval >= 0); break; case '=': cmpval = (cmpval == 0); break; case '#': cmpval = (cmpval != 0); break; } if (exp->nd_RIGHT->nd_RSTR) free(exp->nd_RIGHT->nd_RSTR); free_real(exp->nd_RIGHT->nd_REAL); break; default: crash("(cstfbin)"); } switch(flt_status) { case FLT_OVFL: node_warning(exp, "floating point overflow on %s", symbol2str(exp->nd_symb)); break; case FLT_DIV0: node_error(exp, "division by 0.0"); break; } if (p->r_real) { free(p->r_real); p->r_real = 0; } if (compar) { free_real(p); } commonbin(expp); exp = *expp; if (compar) { exp->nd_symb = INTEGER; exp->nd_INT = cmpval; } else { exp->nd_REAL = p; } CutSize(exp); } void cstubin(expp) t_node **expp; { /* The binary operation in "expp" is performed on the constant expressions below it, and the result restored in expp. */ register t_node *exp = *expp; arith o1 = exp->nd_LEFT->nd_INT; arith o2 = exp->nd_RIGHT->nd_INT; register int sz = exp->nd_type->tp_size; arith tmp1, tmp2; assert(exp->nd_class == Oper); assert(exp->nd_LEFT->nd_class == Value); assert(exp->nd_RIGHT->nd_class == Value); switch (exp->nd_symb) { case '*': if (o1 == 0 || o2 == 0) { o1 = 0; break; } tmp1 = full_mask[sz]; tmp2 = o2; divide(&tmp1, &tmp2); if (! chk_bounds(o1, tmp1, T_CARDINAL)) overflow(exp); o1 *= o2; break; case DIV: case MOD: if (o2 == 0) { node_error(exp, exp->nd_symb == DIV ? "division by 0" : "modulo by 0"); return; } divide(&o1, &o2); if (exp->nd_symb == MOD) o1 = o2; break; case '+': if (! chk_bounds(o2, full_mask[sz] - o1, T_CARDINAL)) { overflow(exp); } o1 += o2; break; case '-': if ( exp->nd_type != address_type && !chk_bounds(o2, o1, T_CARDINAL) && ( exp->nd_type->tp_fund != T_INTORCARD || ( exp->nd_type = int_type , !chk_bounds(min_int[sz], o1 - o2, T_CARDINAL) ) ) ) { node_warning(exp, W_ORDINARY, "underflow in constant expression"); } o1 -= o2; break; case '<': o1 = ! chk_bounds(o2, o1, T_CARDINAL); break; case '>': o1 = ! chk_bounds(o1, o2, T_CARDINAL); break; case LESSEQUAL: o1 = chk_bounds(o1, o2, T_CARDINAL); break; case GREATEREQUAL: o1 = chk_bounds(o2, o1, T_CARDINAL); break; case '=': o1 = (o1 == o2); break; case '#': o1 = (o1 != o2); break; case AND: case '&': o1 = (o1 && o2); break; case OR: o1 = (o1 || o2); break; default: crash("(cstubin)"); } commonbin(expp); exp = *expp; exp->nd_INT = o1; if (exp->nd_type == bool_type) exp->nd_symb = INTEGER; CutSize(exp); } void cstset(expp) t_node **expp; { extern arith *MkSet(); register t_node *exp = *expp; register arith *set1, *set2, *set3; register unsigned int setsize; register int j; assert(exp->nd_RIGHT->nd_class == Set); assert(exp->nd_symb == IN || exp->nd_LEFT->nd_class == Set); set2 = exp->nd_RIGHT->nd_set; setsize = (unsigned) (exp->nd_RIGHT->nd_type->tp_size) / (unsigned) word_size; if (exp->nd_symb == IN) { /* The setsize must fit in an unsigned, as it is allocated with Malloc, so we can do the arithmetic in an unsigned too. */ unsigned i; assert(exp->nd_LEFT->nd_class == Value); exp->nd_LEFT->nd_INT -= exp->nd_RIGHT->nd_type->set_low; exp = exp->nd_LEFT; i = exp->nd_INT; /* Careful here; use exp->nd_LEFT->nd_INT to see if it falls in the range of the set. Do not use i for this, as i may be truncated. */ i = (exp->nd_INT >= 0 && exp->nd_INT < setsize * wrd_bits && (set2[i / wrd_bits] & (1 << (i % wrd_bits)))); FreeSet(set2); exp = getnode(Value); exp->nd_symb = INTEGER; exp->nd_lineno = (*expp)->nd_lineno; exp->nd_INT = i; exp->nd_type = bool_type; FreeNode(*expp); *expp = exp; return; } set1 = exp->nd_LEFT->nd_set; *expp = getnode(Set); (*expp)->nd_type = exp->nd_type; (*expp)->nd_lineno = exp->nd_lineno; switch(exp->nd_symb) { case '+': /* Set union */ case '-': /* Set difference */ case '*': /* Set intersection */ case '/': /* Symmetric set difference */ (*expp)->nd_set = set3 = MkSet(exp->nd_type->set_sz); for (j = 0; j < setsize; j++) { switch(exp->nd_symb) { case '+': *set3++ = *set1++ | *set2++; break; case '-': *set3++ = *set1++ & ~*set2++; break; case '*': *set3++ = *set1++ & *set2++; break; case '/': *set3++ = *set1++ ^ *set2++; break; } } break; case GREATEREQUAL: case LESSEQUAL: case '=': case '#': /* Constant set comparisons */ for (j = 0; j < setsize; j++) { switch(exp->nd_symb) { case GREATEREQUAL: if ((*set1 | *set2++) != *set1) break; set1++; continue; case LESSEQUAL: if ((*set2 | *set1++) != *set2) break; set2++; continue; case '=': case '#': if (*set1++ != *set2++) break; continue; } break; } if (j < setsize) { j = exp->nd_symb == '#'; } else { j = exp->nd_symb != '#'; } *expp = getnode(Value); (*expp)->nd_symb = INTEGER; (*expp)->nd_INT = j; (*expp)->nd_type = bool_type; (*expp)->nd_lineno = (*expp)->nd_lineno; break; default: crash("(cstset)"); } FreeSet(exp->nd_LEFT->nd_set); FreeSet(exp->nd_RIGHT->nd_set); FreeNode(exp); } cstcall(expp, call) t_node **expp; { /* a standard procedure call is found that can be evaluated compile time, so do so. */ register t_node *expr; register t_type *tp; assert((*expp)->nd_class == Call); expr = (*expp)->nd_RIGHT->nd_LEFT; tp = expr->nd_type; expr->nd_type = (*expp)->nd_type; (*expp)->nd_RIGHT->nd_LEFT = 0; FreeNode(*expp); *expp = expr; expr->nd_symb = INTEGER; expr->nd_class = Value; switch(call) { case S_ABS: if (expr->nd_INT < 0) { if (! options['s'] && expr->nd_INT <= min_int[(int)(tp->tp_size)]) { overflow(expr); } expr->nd_INT = - expr->nd_INT; } CutSize(expr); break; case S_CAP: if (expr->nd_INT >= 'a' && expr->nd_INT <= 'z') { expr->nd_INT += ('A' - 'a'); } break; case S_HIGH: case S_MAX: if (tp->tp_fund == T_INTEGER) { expr->nd_INT = max_int[(int)(tp->tp_size)]; } else if (tp->tp_fund == T_CARDINAL) { expr->nd_INT = full_mask[(int)(tp->tp_size)]; } else if (tp->tp_fund == T_SUBRANGE) { expr->nd_INT = tp->sub_ub; } else expr->nd_INT = tp->enm_ncst - 1; break; case S_MIN: if (tp->tp_fund == T_INTEGER) { expr->nd_INT = min_int[(int)(tp->tp_size)]; } else if (tp->tp_fund == T_SUBRANGE) { expr->nd_INT = tp->sub_lb; } else expr->nd_INT = 0; break; case S_ODD: expr->nd_INT &= 1; break; case S_TSIZE: case S_SIZE: expr->nd_INT = tp->tp_size; break; default: crash("(cstcall)"); } } void CutSize(expr) register t_node *expr; { /* The constant value of the expression expr is made to conform to the size of the type of the expression. */ register t_type *tp = BaseType(expr->nd_type); assert(expr->nd_class == Value); if (tp->tp_fund == T_REAL) return; if (tp->tp_fund != T_INTEGER) { expr->nd_INT &= full_mask[(int)(tp->tp_size)]; } else { int nbits = (int) (sizeof(arith) - tp->tp_size) * 8; expr->nd_INT = (expr->nd_INT << nbits) >> nbits; } } InitCst() { register int i = 0; #ifndef NOCROSS register arith bt = (arith)0; while (!(bt < 0)) { i++; bt = (bt << 8) + 0377; if (i == MAXSIZE+1) fatal("array full_mask too small for this machine"); full_mask[i] = bt; max_int[i] = bt & ~(1L << ((8 * i) - 1)); min_int[i] = - max_int[i]; if (! options['s']) min_int[i]--; } if ((int)long_size > sizeof(arith)) { fatal("sizeof (arith) insufficient on this machine"); } wrd_bits = 8 * (int) word_size; #else if (options['s']) { for (i = 0; i < sizeof(long); i++) min_int[i] = - max_int[i]; } #endif }