ack/lang/m2/comp/chk_expr.c

1525 lines
34 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* E X P R E S S I O N C H E C K I N G */
/* $Id$ */
/* Check expressions, and try to evaluate them as far as possible.
*/
#include <stdlib.h>
#include <string.h>
#include "parameters.h"
#include "debug.h"
#include <em_arith.h>
#include <em_label.h>
#include <assert.h>
#include <alloc.h>
#include <flt_arith.h>
#include <system.h>
#include "Lpars.h"
#include "idf.h"
#include "LLlex.h"
#include "type.h"
#include "def.h"
#include "node.h"
#include "scope.h"
#include "error.h"
#include "standards.h"
#include "chk_expr.h"
#include "cstoper.h"
#include "typequiv.h"
#include "misc.h"
#include "lookup.h"
#include "print.h"
#include "warning.h"
#include "main.h"
extern char *symbol2str();
/* Forward file declarations */
static int ChkStandard(struct node **);
static int ChkCast(struct node **);
static void df_error(
struct node *nd, /* node on which error occurred */
char *mess, /* error message */
register struct def *edf) /* do we have a name? */
{
if (edf) {
if (edf->df_kind != D_ERROR) {
node_error(nd,"\"%s\": %s", edf->df_idf->id_text, mess);
}
}
else node_error(nd, mess);
}
void MkCoercion(struct node **pnd, register struct type *tp)
{
/* Make a coercion from the node indicated by *pnd to the
type indicated by tp. If the node indicated by *pnd
is constant, try to do the coercion compile-time.
Coercions are inserted in the tree when
- the expression is not constant or
- we are in the second pass and the coercion might cause
an error
*/
register struct node *nd = *pnd;
register struct type *nd_tp = nd->nd_type;
extern int pass_1;
char *wmess = 0;
arith op;
if (nd_tp == tp || nd_tp->tp_fund == T_STRING /* Why ??? */) return;
nd_tp = BaseType(nd_tp);
if (nd->nd_class == Value && nd->nd_type != error_type && tp != error_type) {
if (nd_tp->tp_fund == T_REAL) {
switch(tp->tp_fund) {
case T_REAL:
nd->nd_type = tp;
return;
case T_CARDINAL:
op = flt_flt2arith(&nd->nd_RVAL, 1);
break;
case T_INTEGER:
op = flt_flt2arith(&nd->nd_RVAL, 0);
break;
default:
crash("MkCoercion");
/*NOTREACHED*/
}
if (flt_status == FLT_OVFL) {
wmess = "conversion";
}
if (!wmess || pass_1) {
if (nd->nd_RSTR) free(nd->nd_RSTR);
free_real(nd->nd_REAL);
nd->nd_INT = op;
nd->nd_symb = INTEGER;
}
}
switch(tp->tp_fund) {
case T_REAL: {
struct real *p = new_real();
switch(BaseType(nd_tp)->tp_fund) {
case T_CARDINAL:
case T_INTORCARD:
flt_arith2flt(nd->nd_INT, &p->r_val, 1);
break;
case T_INTEGER:
flt_arith2flt(nd->nd_INT, &p->r_val, 0);
break;
default:
crash("MkCoercion");
}
nd->nd_REAL = p;
nd->nd_symb = REAL;
}
break;
case T_SUBRANGE:
case T_ENUMERATION:
case T_CHAR:
if (! in_range(nd->nd_INT, tp)) {
wmess = "range bound";
}
break;
case T_INTORCARD:
case T_CARDINAL:
case T_POINTER:
if ((nd_tp->tp_fund == T_INTEGER && nd->nd_INT < 0) ||
(nd->nd_INT & ~full_mask[(int)(tp->tp_size)])) {
wmess = "conversion";
}
break;
case T_INTEGER:
if (! chk_bounds(nd->nd_INT,
max_int[(int)(tp->tp_size)],
nd_tp->tp_fund) ||
! chk_bounds(min_int[(int)(tp->tp_size)],
nd->nd_INT,
T_INTEGER)) {
wmess = "conversion";
}
break;
}
if (wmess) {
node_warning(nd, W_ORDINARY, "might cause %s error", wmess);
}
if (!wmess || pass_1) {
nd->nd_type = tp;
return;
}
}
*pnd = nd;
nd = getnode(Uoper);
nd->nd_symb = COERCION;
nd->nd_type = tp;
nd->nd_LEFT = NULLNODE;
nd->nd_RIGHT = *pnd;
nd->nd_lineno = (*pnd)->nd_lineno;
*pnd = nd;
}
int ChkVariable(register struct node **expp, int flags)
{
/* Check that "expp" indicates an item that can be
assigned to.
*/
register struct node *exp;
if (! ChkDesig(expp, flags)) return 0;
exp = *expp;
if (exp->nd_class == Def &&
! (exp->nd_def->df_kind & (D_FIELD|D_VARIABLE))) {
df_error(exp, "variable expected", exp->nd_def);
return 0;
}
return 1;
}
static int ChkArrow(struct node **expp, int flags)
{
/* Check an application of the '^' operator.
The operand must be a variable of a pointer type.
*/
register struct type *tp;
register struct node *exp = *expp;
assert(exp->nd_class == Arrow);
assert(exp->nd_symb == '^');
exp->nd_type = error_type;
if (! ChkVariable(&(exp->nd_RIGHT), D_USED)) return 0;
tp = exp->nd_RIGHT->nd_type;
if (tp->tp_fund != T_POINTER) {
node_error(exp, "\"^\": illegal operand type");
return 0;
}
if ((tp = RemoveEqual(PointedtoType(tp))) == 0) tp = error_type;
exp->nd_type = tp;
return 1;
}
static int ChkArr(struct node **expp, int flags)
{
/* Check an array selection.
The left hand side must be a variable of an array type,
and the right hand side must be an expression that is
assignment compatible with the array-index.
*/
register struct type *tpl;
register struct node *exp = *expp;
assert(exp->nd_class == Arrsel);
assert(exp->nd_symb == '[' || exp->nd_symb == ',');
exp->nd_type = error_type;
if (! (ChkVariable(&(exp->nd_LEFT), flags) &
ChkExpression(&(exp->nd_RIGHT)))) {
/* Bitwise and, because we want them both evaluated.
*/
return 0;
}
tpl = exp->nd_LEFT->nd_type;
if (tpl->tp_fund != T_ARRAY) {
node_error(exp, "not indexing an ARRAY type");
return 0;
}
exp->nd_type = RemoveEqual(tpl->arr_elem);
/* Type of the index must be assignment compatible with
the index type of the array (Def 8.1).
However, the index type of a conformant array is not specified.
In our implementation it is CARDINAL.
*/
return ChkAssCompat(&(exp->nd_RIGHT),
BaseType(IndexType(tpl)),
"index type");
}
/*ARGSUSED*/
static int ChkValue(struct node **expp, int flags)
{
#ifdef DEBUG
switch((*expp)->nd_symb) {
case REAL:
case STRING:
case INTEGER:
break;
default:
crash("(ChkValue)");
}
#endif
return 1;
}
static int ChkSelOrName(struct node **expp, int flags)
{
/* Check either an ID or a construction of the form
ID.ID [ .ID ]*
*/
register struct def *df;
register struct node *exp = *expp;
exp->nd_type = error_type;
if (exp->nd_class == Name) {
df = lookfor(exp, CurrVis, 1, flags);
exp = getnode(Def);
exp->nd_def = df;
exp->nd_lineno = (*expp)->nd_lineno;
exp->nd_type = RemoveEqual(df->df_type);
FreeNode(*expp);
*expp = exp;
}
else if (exp->nd_class == Select) {
/* A selection from a record or a module.
Modules also have a record type.
*/
register struct node *left;
assert(exp->nd_symb == '.');
if (! ChkDesig(&(exp->nd_NEXT), flags)) return 0;
left = exp->nd_NEXT;
if (left->nd_class==Def &&
(left->nd_type->tp_fund != T_RECORD ||
!(left->nd_def->df_kind & (D_MODULE|D_VARIABLE|D_FIELD))
)
) {
df_error(left, "illegal selection", left->nd_def);
return 0;
}
if (left->nd_type->tp_fund != T_RECORD) {
node_error(left, "illegal selection");
return 0;
}
if (!(df = lookup(exp->nd_IDF, left->nd_type->rec_scope, D_IMPORTED, flags))) {
id_not_declared(exp);
return 0;
}
exp = getnode(Def);
exp->nd_def = df;
exp->nd_type = RemoveEqual(df->df_type);
exp->nd_lineno = (*expp)->nd_lineno;
free_node(*expp);
*expp = exp;
if (!(df->df_flags & (D_EXPORTED|D_QEXPORTED))) {
/* Fields of a record are always D_QEXPORTED,
so ...
*/
df_error(exp, "not exported from qualifying module", df);
}
if (!(left->nd_class == Def &&
left->nd_def->df_kind == D_MODULE)) {
exp->nd_NEXT = left;
return 1;
}
FreeNode(left);
}
assert(exp->nd_class == Def);
return exp->nd_def->df_kind != D_ERROR;
}
static int ChkExSelOrName(struct node **expp, int flags)
{
/* Check either an ID or an ID.ID [.ID]* occurring in an
expression.
*/
register struct def *df;
register struct node *exp;
if (! ChkSelOrName(expp, D_USED)) return 0;
exp = *expp;
df = exp->nd_def;
if (df->df_kind & (D_ENUM | D_CONST)) {
/* Replace an enum-literal or a CONST identifier by its value.
*/
exp = getnode(Value);
exp->nd_type = df->df_type;
if (df->df_kind == D_ENUM) {
exp->nd_INT = df->enm_val;
exp->nd_symb = INTEGER;
}
else {
assert(df->df_kind == D_CONST);
exp->nd_token = df->con_const;
}
exp->nd_lineno = (*expp)->nd_lineno;
if (df->df_type->tp_fund == T_SET) {
exp->nd_class = Set;
inc_refcount(exp->nd_set);
}
else if (df->df_type->tp_fund == T_PROCEDURE) {
/* for procedure constants */
exp->nd_class = Def;
}
if (df->df_type->tp_fund == T_REAL) {
struct real *p = exp->nd_REAL;
exp->nd_REAL = new_real();
*(exp->nd_REAL) = *p;
if (p->r_real) {
p->r_real = Salloc(p->r_real,
(unsigned)(strlen(p->r_real)+1));
}
}
FreeNode(*expp);
*expp = exp;
}
if (!(df->df_kind & D_VALUE)) {
df_error(exp, "value expected", df);
return 0;
}
if (df->df_kind == D_PROCEDURE) {
/* Check that this procedure is one that we may take the
address from.
*/
if (df->df_type == std_type || df->df_scope->sc_level > 0) {
/* Address of standard or nested procedure
taken.
*/
node_error(exp,
"standard or local procedures may not be assigned");
return 0;
}
}
return 1;
}
static int ChkEl(register struct node **expp, struct type *tp)
{
return ChkExpression(expp) && ChkCompat(expp, tp, "set element");
}
static int ChkElement(struct node **expp, struct type *tp, arith *set)
{
/* Check elements of a set. This routine may call itself
recursively.
Also try to compute the set!
*/
register struct node *expr = *expp;
struct type *el_type = ElementType(tp);
register unsigned int i;
arith low, high;
if (expr->nd_class == Link && expr->nd_symb == UPTO) {
/* { ... , expr1 .. expr2, ... }
First check expr1 and expr2, and try to compute them.
*/
if (! (ChkEl(&(expr->nd_LEFT), el_type) &
ChkEl(&(expr->nd_RIGHT), el_type))) {
return 0;
}
if (!(expr->nd_LEFT->nd_class == Value &&
expr->nd_RIGHT->nd_class == Value)) {
return 1;
}
/* We have a constant range. Put all elements in the
set
*/
low = expr->nd_LEFT->nd_INT;
high = expr->nd_RIGHT->nd_INT;
}
else {
if (! ChkEl(expp, el_type)) return 0;
expr = *expp;
if (expr->nd_class != Value) {
return 1;
}
low = high = expr->nd_INT;
}
if (! chk_bounds(low, high, BaseType(el_type)->tp_fund)) {
node_error(expr, "lower bound exceeds upper bound in range");
return 0;
}
if (! in_range(low, el_type) || ! in_range(high, el_type)) {
node_error(expr, "set element out of range");
return 0;
}
low -= tp->set_low;
high -= tp->set_low;
for (i=(unsigned)low; i<= (unsigned)high; i++) {
set[i/wrd_bits] |= (1<<(i%wrd_bits));
}
FreeNode(expr);
*expp = 0;
return 1;
}
arith *MkSet(unsigned int size)
{
register arith *s, *t;
s = t = (arith *) Malloc(size);
s++;
size /= sizeof(arith);
while (size--) *t++ = 0;
inc_refcount(s);
return s;
}
void FreeSet(register arith *s)
{
dec_refcount(s);
if (refcount(s) <= 0) {
assert(refcount(s) == 0);
free((char *) (s-1));
}
}
static int ChkSet(struct node **expp, int flags)
{
/* Check the legality of a SET aggregate, and try to evaluate it
compile time. Unfortunately this is all rather complicated.
*/
register struct type *tp;
register struct node *exp = *expp;
register struct node *nd;
register struct def *df;
int retval = 1;
int SetIsConstant = 1;
assert(exp->nd_symb == SET);
*expp = getnode(Set);
(*expp)->nd_type = error_type;
(*expp)->nd_lineno = exp->nd_lineno;
/* First determine the type of the set
*/
if (exp->nd_LEFT) {
/* A type was given. Check it out
*/
if (! ChkDesig(&(exp->nd_LEFT), D_USED)) return 0;
nd = exp->nd_LEFT;
assert(nd->nd_class == Def);
df = nd->nd_def;
if (!is_type(df) ||
(df->df_type->tp_fund != T_SET)) {
df_error(nd, "not a SET type", df);
return 0;
}
tp = df->df_type;
}
else tp = bitset_type;
(*expp)->nd_type = tp;
nd = exp->nd_RIGHT;
/* Now check the elements given, and try to compute a constant set.
First allocate room for the set.
*/
(*expp)->nd_set = MkSet(tp->set_sz);
/* Now check the elements, one by one
*/
while (nd) {
assert(nd->nd_class == Link && nd->nd_symb == ',');
if (!ChkElement(&(nd->nd_LEFT), tp, (*expp)->nd_set)) {
retval = 0;
}
if (nd->nd_LEFT) SetIsConstant = 0;
nd = nd->nd_RIGHT;
}
if (! SetIsConstant) {
(*expp)->nd_NEXT = exp->nd_RIGHT;
exp->nd_RIGHT = 0;
}
FreeNode(exp);
return retval;
}
static struct node *nextarg(struct node **argp, struct def *edf)
{
register struct node *arg = (*argp)->nd_RIGHT;
if (! arg) {
df_error(*argp, "too few arguments supplied", edf);
return 0;
}
*argp = arg;
return arg;
}
static struct node *getarg(struct node **argp, int bases, int designator, struct def *edf)
{
/* This routine is used to fetch the next argument from an
argument list. The argument list is indicated by "argp".
The parameter "bases" is a bitset indicating which types
are allowed at this point, and "designator" is a flag
indicating that the address from this argument is taken, so
that it must be a designator and may not be a register
variable.
*/
register struct node *arg = nextarg(argp, edf);
register struct node *left;
if (! arg ||
! arg->nd_LEFT ||
! (designator ? ChkVariable(&(arg->nd_LEFT), D_USED|D_DEFINED) : ChkExpression(&(arg->nd_LEFT)))) {
return 0;
}
left = arg->nd_LEFT;
if (designator && left->nd_class==Def) {
left->nd_def->df_flags |= D_NOREG;
}
if (bases) {
struct type *tp = BaseType(left->nd_type);
if (! designator) MkCoercion(&(arg->nd_LEFT), tp);
left = arg->nd_LEFT;
if (!(tp->tp_fund & bases)) {
df_error(left, "unexpected parameter type", edf);
return 0;
}
}
return left;
}
static struct node *getname(struct node **argp, int kinds, int bases, struct def *edf)
{
/* Get the next argument from argument list "argp".
The argument must indicate a definition, and the
definition kind must be one of "kinds".
*/
register struct node *arg = nextarg(argp, edf);
register struct node *left;
if (!arg || !arg->nd_LEFT || ! ChkDesig(&(arg->nd_LEFT), D_USED)) return 0;
left = arg->nd_LEFT;
if (left->nd_class != Def) {
df_error(left, "identifier expected", edf);
return 0;
}
if (!(left->nd_def->df_kind & kinds) ||
(bases && !(left->nd_type->tp_fund & bases))) {
df_error(left, "unexpected parameter type", edf);
return 0;
}
return left;
}
static int ChkProcCall(register struct node *exp)
{
/* Check a procedure call
*/
register struct node *left;
struct node *argp;
struct def *edf = 0;
register struct paramlist *param;
int retval = 1;
int cnt = 0;
left = exp->nd_LEFT;
if (left->nd_class == Def) {
edf = left->nd_def;
}
if (left->nd_type == error_type) {
/* Just check parameters as if they were value parameters
*/
argp = exp;
while (argp->nd_RIGHT) {
if (getarg(&argp, 0, 0, edf)) { }
}
return 0;
}
exp->nd_type = RemoveEqual(ResultType(left->nd_type));
/* Check parameter list
*/
argp = exp;
for (param = ParamList(left->nd_type); param; param = param->par_next) {
if (!(left = getarg(&argp, 0, IsVarParam(param), edf))) {
retval = 0;
cnt++;
continue;
}
cnt++;
if (left->nd_symb == STRING) {
TryToString(left, TypeOfParam(param));
}
if (! TstParCompat(cnt,
RemoveEqual(TypeOfParam(param)),
IsVarParam(param),
&(argp->nd_LEFT),
edf)) {
retval = 0;
}
}
exp = argp;
if (exp->nd_RIGHT) {
df_error(exp->nd_RIGHT,"too many parameters supplied",edf);
while (argp->nd_RIGHT) {
if (getarg(&argp, 0, 0, edf)) { }
}
return 0;
}
return retval;
}
static int ChkFunCall(register struct node **expp, int flags)
{
/* Check a call that must have a result
*/
if (ChkCall(expp)) {
if ((*expp)->nd_type != 0) return 1;
node_error(*expp, "function call expected");
}
(*expp)->nd_type = error_type;
return 0;
}
int ChkCall(struct node **expp)
{
/* Check something that looks like a procedure or function call.
Of course this does not have to be a call at all,
it may also be a cast or a standard procedure call.
*/
/* First, get the name of the function or procedure
*/
if (ChkDesig(&((*expp)->nd_LEFT), D_USED)) {
register struct node *left = (*expp)->nd_LEFT;
if (IsCast(left)) {
/* It was a type cast.
*/
return ChkCast(expp);
}
if (IsProc(left) || left->nd_type == error_type) {
/* A procedure call.
It may also be a call to a standard procedure
*/
if (left->nd_type == std_type) {
/* A standard procedure
*/
return ChkStandard(expp);
}
/* Here, we have found a real procedure call.
The left hand side may also represent a procedure
variable.
*/
}
else {
node_error(left, "procedure, type, or function expected");
left->nd_type = error_type;
}
}
return ChkProcCall(*expp);
}
static struct type *ResultOfOperation(int operator, struct type *tp)
{
/* Return the result type of the binary operation "operator",
with operand type "tp".
*/
switch(operator) {
case '=':
case '#':
case GREATEREQUAL:
case LESSEQUAL:
case '<':
case '>':
case IN:
return bool_type;
}
return tp;
}
#define Boolean(operator) (operator == OR || operator == AND)
static int AllowedTypes(int operator)
{
/* Return a bit mask indicating the allowed operand types
for binary operator "operator".
*/
switch(operator) {
case '+':
case '-':
case '*':
return T_NUMERIC|T_SET;
case '/':
return T_REAL|T_SET;
case DIV:
case MOD:
return T_INTORCARD;
case OR:
case AND:
return T_ENUMERATION;
case '=':
case '#':
return T_POINTER|T_HIDDEN|T_SET|T_NUMERIC|T_ENUMERATION|T_CHAR;
case GREATEREQUAL:
case LESSEQUAL:
return T_SET|T_NUMERIC|T_CHAR|T_ENUMERATION;
case '<':
case '>':
return T_NUMERIC|T_CHAR|T_ENUMERATION;
default:
crash("(AllowedTypes)");
}
/*NOTREACHED*/
}
static int ChkAddressOper(
register struct type *tpl,
register struct type *tpr,
register struct node *expp)
{
/* Check that either "tpl" or "tpr" are both of type
address_type, or that one of them is, but the other is
of a cardinal type.
Also insert proper coercions, making sure that the EM pointer
arithmetic instructions can be generated whenever possible
*/
if (tpr == address_type && expp->nd_symb == '+') {
/* use the fact that '+' is a commutative operator */
struct type *tmptype = tpr;
struct node *tmpnode = expp->nd_RIGHT;
tpr = tpl;
expp->nd_RIGHT = expp->nd_LEFT;
tpl = tmptype;
expp->nd_LEFT = tmpnode;
}
if (tpl == address_type) {
expp->nd_type = address_type;
if (tpr == address_type) {
return 1;
}
if (tpr->tp_fund & T_CARDINAL) {
MkCoercion(&(expp->nd_RIGHT),
expp->nd_symb=='+' || expp->nd_symb=='-' ?
tpr :
address_type);
return 1;
}
return 0;
}
if (tpr == address_type && tpl->tp_fund & T_CARDINAL) {
expp->nd_type = address_type;
MkCoercion(&(expp->nd_LEFT), address_type);
return 1;
}
return 0;
}
static int ChkBinOper(struct node **expp, int flags)
{
/* Check a binary operation.
*/
register struct node *exp = *expp;
register struct type *tpl, *tpr;
struct type *result_type;
int allowed;
int retval;
char *symb;
/* First, check BOTH operands */
retval = ChkExpression(&(exp->nd_LEFT));
retval &= ChkExpression(&(exp->nd_RIGHT));
tpl = BaseType(exp->nd_LEFT->nd_type);
tpr = BaseType(exp->nd_RIGHT->nd_type);
if (intorcard(tpl, tpr) != 0) {
if (tpl->tp_fund == T_INTORCARD) {
exp->nd_LEFT->nd_type = tpl = tpr;
}
if (tpr->tp_fund == T_INTORCARD) {
exp->nd_RIGHT->nd_type = tpr = tpl;
}
}
exp->nd_type = result_type = ResultOfOperation(exp->nd_symb, tpr);
/* Check that the application of the operator is allowed on the type
of the operands.
There are three tricky parts:
- Boolean operators are only allowed on boolean operands, but
the "allowed-mask" of "AllowedTypes" can only indicate
an enumeration type.
- All operations that are allowed on CARDINALS are also allowed
on ADDRESS.
- The IN-operator has as right-hand-size operand a set.
*/
if (exp->nd_symb == IN) {
if (tpr->tp_fund != T_SET) {
node_error(exp, "\"IN\": right operand must be a set");
return 0;
}
if (!TstAssCompat(ElementType(tpr), tpl)) {
/* Assignment compatible ???
I don't know! Should we be allowed to check
if a INTEGER is a member of a BITSET???
*/
node_error(exp->nd_LEFT, "type incompatibility in IN");
return 0;
}
MkCoercion(&(exp->nd_LEFT), word_type);
if (exp->nd_LEFT->nd_class == Value &&
exp->nd_RIGHT->nd_class == Set &&
! exp->nd_RIGHT->nd_NEXT) {
cstset(expp);
}
return retval;
}
if (!retval) return 0;
allowed = AllowedTypes(exp->nd_symb);
symb = symbol2str(exp->nd_symb);
if (!(tpr->tp_fund & allowed) || !(tpl->tp_fund & allowed)) {
if (!((T_CARDINAL & allowed) &&
ChkAddressOper(tpl, tpr, exp))) {
node_error(exp, "\"%s\": illegal operand type(s)", symb);
return 0;
}
if (result_type == bool_type) exp->nd_type = bool_type;
}
else {
if (Boolean(exp->nd_symb) && tpl != bool_type) {
node_error(exp, "\"%s\": illegal operand type(s)", symb);
return 0;
}
/* Operands must be compatible (distilled from Def 8.2)
*/
if (!TstCompat(tpr, tpl)) {
extern char *incompat();
node_error(exp, "\"%s\": %s in operands", symb, incompat(tpl, tpr));
return 0;
}
MkCoercion(&(exp->nd_LEFT), tpl);
MkCoercion(&(exp->nd_RIGHT), tpr);
}
if (tpl->tp_fund == T_SET) {
if (exp->nd_LEFT->nd_class == Set &&
! exp->nd_LEFT->nd_NEXT &&
exp->nd_RIGHT->nd_class == Set &&
! exp->nd_RIGHT->nd_NEXT) {
cstset(expp);
}
}
else if ( exp->nd_LEFT->nd_class == Value &&
exp->nd_RIGHT->nd_class == Value) {
if (tpl->tp_fund == T_INTEGER) {
cstibin(expp);
}
else if (tpl->tp_fund == T_REAL) {
cstfbin(expp);
}
else cstubin(expp);
}
return 1;
}
static int ChkUnOper(struct node **expp, int flags)
{
/* Check an unary operation.
*/
register struct node *exp = *expp;
register struct node *right = exp->nd_RIGHT;
register struct type *tpr;
if (exp->nd_symb == COERCION) return 1;
if (exp->nd_symb == '(') {
*expp = right;
free_node(exp);
return ChkExpression(expp);
}
exp->nd_type = error_type;
if (! ChkExpression(&(exp->nd_RIGHT))) return 0;
exp->nd_type = tpr = BaseType(exp->nd_RIGHT->nd_type);
MkCoercion(&(exp->nd_RIGHT), tpr);
right = exp->nd_RIGHT;
if (tpr == address_type) tpr = card_type;
switch(exp->nd_symb) {
case '+':
if (!(tpr->tp_fund & T_NUMERIC)) break;
*expp = right;
free_node(exp);
return 1;
case '-':
if (tpr->tp_fund == T_INTORCARD || tpr->tp_fund == T_INTEGER) {
if (tpr == intorcard_type) {
exp->nd_type = int_type;
}
else if (tpr == longintorcard_type) {
exp->nd_type = longint_type;
}
if (right->nd_class == Value) {
cstunary(expp);
}
return 1;
}
else if (tpr->tp_fund == T_REAL) {
if (right->nd_class == Value) {
*expp = right;
flt_umin(&(right->nd_RVAL));
if (right->nd_RSTR) {
free(right->nd_RSTR);
right->nd_RSTR = 0;
}
free_node(exp);
}
return 1;
}
break;
case NOT:
case '~':
if (tpr == bool_type) {
if (right->nd_class == Value) {
cstunary(expp);
}
return 1;
}
break;
default:
crash("ChkUnOper");
}
node_error(exp, "\"%s\": illegal operand type", symbol2str(exp->nd_symb));
return 0;
}
static struct node *getvariable(struct node **argp, struct def *edf, int flags)
{
/* Get the next argument from argument list "argp".
It must obey the rules of "ChkVariable".
*/
register struct node *arg = nextarg(argp, edf);
if (! arg ||
! arg->nd_LEFT ||
! ChkVariable(&(arg->nd_LEFT), flags)) return 0;
return arg->nd_LEFT;
}
static int ChkStandard(struct node **expp)
{
/* Check a call of a standard procedure or function
*/
register struct node *exp = *expp;
struct node *arglink = exp;
register struct node *arg;
register struct def *edf = exp->nd_LEFT->nd_def;
int free_it = 0;
int isconstant = 0;
assert(exp->nd_LEFT->nd_class == Def);
exp->nd_type = error_type;
switch(edf->df_value.df_stdname) {
case S_ABS:
if (!(arg = getarg(&arglink, T_NUMERIC, 0, edf))) return 0;
exp->nd_type = BaseType(arg->nd_type);
MkCoercion(&(arglink->nd_LEFT), exp->nd_type);
arg = arglink->nd_LEFT;
if (! (exp->nd_type->tp_fund & (T_INTEGER|T_REAL))) {
free_it = 1;
}
if (arg->nd_class == Value) {
switch(exp->nd_type->tp_fund) {
case T_REAL:
arg->nd_RVAL.flt_sign = 0;
free_it = 1;
break;
case T_INTEGER:
isconstant = 1;
break;
}
}
break;
case S_CAP:
exp->nd_type = char_type;
if (!(arg = getarg(&arglink, T_CHAR, 0, edf))) return 0;
if (arg->nd_class == Value) isconstant = 1;
break;
case S_FLOATD:
case S_FLOAT:
if (! getarg(&arglink, T_INTORCARD, 0, edf)) return 0;
arg = arglink;
if (edf->df_value.df_stdname == S_FLOAT) {
MkCoercion(&(arg->nd_LEFT), card_type);
}
MkCoercion(&(arg->nd_LEFT),
edf->df_value.df_stdname == S_FLOATD ?
longreal_type :
real_type);
free_it = 1;
break;
case S_SHORT:
case S_LONG: {
struct type *tp;
struct type *s1, *s2, *s3, *d1, *d2, *d3;
if (!(arg = getarg(&arglink, 0, 0, edf))) {
return 0;
}
tp = BaseType(arg->nd_type);
if (edf->df_value.df_stdname == S_SHORT) {
s1 = longint_type;
d1 = int_type;
s2 = longreal_type;
d2 = real_type;
s3 = longcard_type;
d3 = card_type;
}
else {
d1 = longint_type;
s1 = int_type;
d2 = longreal_type;
s2 = real_type;
d3 = longcard_type;
s3 = card_type;
}
if (tp == s1) {
MkCoercion(&(arglink->nd_LEFT), d1);
}
else if (tp == s2) {
MkCoercion(&(arglink->nd_LEFT), d2);
}
else if (options['l'] && tp == s3) {
MkCoercion(&(arglink->nd_LEFT), d3);
}
else {
df_error(arg, "unexpected parameter type", edf);
break;
}
free_it = 1;
break;
}
case S_HIGH:
if (!(arg = getarg(&arglink, T_ARRAY|T_STRING|T_CHAR, 0, edf))) {
return 0;
}
if (arg->nd_type->tp_fund == T_ARRAY) {
exp->nd_type = IndexType(arg->nd_type);
if (! IsConformantArray(arg->nd_type)) {
arg->nd_type = exp->nd_type;
isconstant = 1;
}
break;
}
if (arg->nd_symb != STRING) {
df_error(arg,"array parameter expected", edf);
return 0;
}
exp = getnode(Value);
exp->nd_type = card_type;
/* Notice that we could disallow HIGH("") here by checking
that arg->nd_type->tp_fund != T_CHAR || arg->nd_INT != 0.
??? For the time being, we don't. !!!
Maybe the empty string should not be allowed at all.
*/
exp->nd_INT = arg->nd_type->tp_fund == T_CHAR ? 0 :
arg->nd_SLE - 1;
exp->nd_symb = INTEGER;
exp->nd_lineno = (*expp)->nd_lineno;
(*expp)->nd_RIGHT = 0;
FreeNode(*expp);
*expp = exp;
break;
case S_MAX:
case S_MIN:
if (!(arg = getname(&arglink, D_ISTYPE, T_DISCRETE, edf))) {
return 0;
}
exp->nd_type = arg->nd_type;
isconstant = 1;
break;
case S_ODD:
if (! (arg = getarg(&arglink, T_INTORCARD, 0, edf))) return 0;
MkCoercion(&(arglink->nd_LEFT), BaseType(arg->nd_type));
exp->nd_type = bool_type;
if (arglink->nd_LEFT->nd_class == Value) isconstant = 1;
break;
case S_ORD:
if (! (arg = getarg(&arglink, T_NOSUB, 0, edf))) return 0;
exp->nd_type = card_type;
if (arg->nd_class == Value) {
arg->nd_type = card_type;
free_it = 1;
}
break;
#ifndef STRICT_3RD_ED
case S_NEW:
case S_DISPOSE:
{
static int warning_given = 0;
if (!warning_given) {
warning_given = 1;
if (! options['3'])
node_warning(exp, W_OLDFASHIONED, "NEW and DISPOSE are obsolete");
else
node_error(exp, "NEW and DISPOSE are obsolete");
}
}
exp->nd_type = 0;
arg = getvariable(&arglink, edf, D_USED|D_DEFINED);
if (! arg) return 0;
if (! (arg->nd_type->tp_fund == T_POINTER)) {
df_error(arg, "pointer variable expected", edf);
return 0;
}
/* Now, make it look like a call to ALLOCATE or DEALLOCATE */
arglink->nd_RIGHT = arg = getnode(Link);
arg->nd_lineno = exp->nd_lineno;
arg->nd_symb = ',';
arg->nd_LEFT = getnode(Value);
arg = arg->nd_LEFT;
arg->nd_INT = PointedtoType(arglink->nd_LEFT->nd_type)->tp_size;
arg->nd_symb = INTEGER;
arg->nd_lineno = exp->nd_lineno;
arg->nd_type = card_type;
/* Ignore other arguments to NEW and/or DISPOSE ??? */
FreeNode(exp->nd_LEFT);
exp->nd_LEFT = arg = getnode(Name);
arg->nd_symb = IDENT;
arg->nd_lineno = exp->nd_lineno;
arg->nd_IDF = str2idf(edf->df_value.df_stdname==S_NEW ?
"ALLOCATE" : "DEALLOCATE", 0);
return ChkCall(expp);
#endif
case S_TSIZE: /* ??? */
case S_SIZE:
exp->nd_type = intorcard_type;
if (!(arg = getname(&arglink,D_FIELD|D_VARIABLE|D_ISTYPE,0,edf))) {
return 0;
}
if (! IsConformantArray(arg->nd_type)) isconstant = 1;
#ifndef NOSTRICT
else node_warning(exp,
W_STRICT,
"%s on conformant array",
edf->df_idf->id_text);
#endif
#ifndef STRICT_3RD_ED
if (! options['3'] && edf->df_value.df_stdname == S_TSIZE) {
if ( (arg = arglink->nd_RIGHT) ) {
node_warning(arg,
W_OLDFASHIONED,
"TSIZE with multiple parameters, only first parameter used");
FreeNode(arg);
arglink->nd_RIGHT = 0;
}
}
#endif
break;
case S_TRUNCD:
case S_TRUNC:
if (! getarg(&arglink, T_REAL, 0, edf)) return 0;
MkCoercion(&(arglink->nd_LEFT),
edf->df_value.df_stdname == S_TRUNCD ?
options['l'] ? longcard_type : longint_type
: card_type);
free_it = 1;
break;
case S_VAL:
if (!(arg = getname(&arglink, D_ISTYPE, T_NOSUB, edf))) {
return 0;
}
exp->nd_type = arg->nd_def->df_type;
exp->nd_RIGHT = arglink->nd_RIGHT;
arglink->nd_RIGHT = 0;
FreeNode(arglink);
arglink = exp;
/* fall through */
case S_CHR:
if (! getarg(&arglink, T_CARDINAL, 0, edf)) return 0;
if (edf->df_value.df_stdname == S_CHR) {
exp->nd_type = char_type;
}
if (exp->nd_type != int_type) {
MkCoercion(&(arglink->nd_LEFT), exp->nd_type);
free_it = 1;
}
break;
case S_ADR:
exp->nd_type = address_type;
if (! getarg(&arglink, 0, 1, edf)) return 0;
break;
case S_DEC:
case S_INC:
exp->nd_type = 0;
if (! (arg = getvariable(&arglink, edf, D_USED|D_DEFINED))) return 0;
if (! (arg->nd_type->tp_fund & T_DISCRETE)) {
df_error(arg,"illegal parameter type", edf);
return 0;
}
if (arglink->nd_RIGHT) {
if (! getarg(&arglink, T_INTORCARD, 0, edf)) return 0;
}
break;
case S_HALT:
exp->nd_type = 0;
break;
case S_EXCL:
case S_INCL:
{
register struct type *tp;
struct node *dummy;
exp->nd_type = 0;
if (!(arg = getvariable(&arglink, edf, D_USED|D_DEFINED))) return 0;
tp = arg->nd_type;
if (tp->tp_fund != T_SET) {
df_error(arg, "SET parameter expected", edf);
return 0;
}
if (!(dummy = getarg(&arglink, 0, 0, edf))) return 0;
if (!ChkAssCompat(&dummy, ElementType(tp), "EXCL/INCL")) {
/* What type of compatibility do we want here?
apparently assignment compatibility! ??? ???
But we don't want the coercion in the tree, because
we don't want a range check here. We want a SET
error.
*/
return 0;
}
MkCoercion(&(arglink->nd_LEFT), word_type);
break;
}
default:
crash("(ChkStandard)");
}
arg = arglink;
if (arg->nd_RIGHT) {
df_error(arg->nd_RIGHT, "too many parameters supplied", edf);
return 0;
}
if (isconstant) {
cstcall(expp, edf->df_value.df_stdname);
return 1;
}
if (free_it) {
*expp = arg->nd_LEFT;
exp->nd_RIGHT = arg;
arg->nd_LEFT = 0;
FreeNode(exp);
}
return 1;
}
static int ChkCast(struct node **expp)
{
/* Check a cast and perform it if the argument is constant.
If the sizes don't match, only complain if at least one of them
has a size larger than the word size.
If both sizes are equal to or smaller than the word size, there
is no problem as such values take a word on the EM stack
anyway.
*/
register struct node *exp = *expp;
register struct node *arg = exp->nd_RIGHT;
register struct type *lefttype = exp->nd_LEFT->nd_type;
struct def *df = exp->nd_LEFT->nd_def;
if ((! arg) || arg->nd_RIGHT) {
df_error(exp, "type cast must have 1 parameter", df);
return 0;
}
if (! ChkExpression(&(arg->nd_LEFT))) return 0;
MkCoercion(&(arg->nd_LEFT), BaseType(arg->nd_LEFT->nd_type));
arg = arg->nd_LEFT;
if (arg->nd_type->tp_size != lefttype->tp_size &&
(arg->nd_type->tp_size > word_size ||
lefttype->tp_size > word_size)) {
df_error(exp, "unequal sizes in type cast", df);
return 0;
}
if (IsConformantArray(arg->nd_type)) {
df_error(exp,
"type transfer function on conformant array not supported",
df);
return 0;
}
exp->nd_RIGHT->nd_LEFT = 0;
FreeNode(exp);
if (arg->nd_class == Value) {
exp = arg;
if (lefttype->tp_fund == T_SET) {
/* User deserves what he gets here ... */
exp = getnode(Set);
exp->nd_set = MkSet((unsigned)(lefttype->set_sz));
exp->nd_set[0] = arg->nd_INT;
exp->nd_lineno = arg->nd_lineno;
FreeNode(arg);
}
}
else {
exp = getnode(Uoper);
exp->nd_symb = CAST;
exp->nd_lineno = arg->nd_lineno;
exp->nd_RIGHT = arg;
}
*expp = exp;
exp->nd_type = lefttype;
return 1;
}
void TryToString(register struct node *nd, struct type *tp)
{
/* Try a coercion from character constant to string.
*/
static char buf[8];
assert(nd->nd_symb == STRING);
if (tp->tp_fund == T_ARRAY && nd->nd_type == char_type) {
buf[0] = nd->nd_INT;
nd->nd_type = standard_type(T_STRING, 1, (arith) 2);
nd->nd_SSTR =
(struct string *) Malloc(sizeof(struct string));
nd->nd_STR = Salloc(buf, (unsigned) word_size);
nd->nd_SLE = 1;
}
}
static int no_desig(struct node **expp, int flags)
{
node_error(*expp, "designator expected");
return 0;
}
static int add_flags(struct node **expp, int flags)
{
(*expp)->nd_def->df_flags |= flags;
return 1;
}
int (*ExprChkTable[])(struct node **, int) = {
ChkValue,
ChkArr,
ChkBinOper,
ChkUnOper,
ChkArrow,
ChkFunCall,
ChkExSelOrName,
PNodeCrash,
ChkSet,
add_flags,
PNodeCrash,
ChkExSelOrName,
PNodeCrash,
};
int (*DesigChkTable[])(struct node **, int) = {
no_desig,
ChkArr,
no_desig,
no_desig,
ChkArrow,
no_desig,
ChkSelOrName,
PNodeCrash,
no_desig,
add_flags,
PNodeCrash,
ChkSelOrName,
PNodeCrash,
};