ack/lang/occam/comp/expr.c

478 lines
10 KiB
C

/* $Header$ */
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
#include "symtab.h"
#include "sizes.h"
#include "expr.h"
#include "Lpars.h"
static void rvalue(), assignable(), inputable(), outputable(), subscriptable();
static void assigned();
char *Malloc();
/* The new_* functions make use of the used() and assinged() functions to
* make known what is done to a variable.
*/
struct expr *new_node(op, left, right, byte)
int op;
register struct expr *left, *right;
int byte;
/* Makes a new node with given operator, left and right operand.
* Constant folding is done if possible.
*/
{
if (op!=FOR && constant(left) && (right==nil || constant(right))) {
register long lc, rc;
lc=left->u.cst;
if (right) rc=right->u.cst; else rc = 0;
switch (op) {
case '+': lc+=rc; break;
case '-': lc-=rc; break;
case '*': lc*=rc; break;
case '/': if (rc==0L)
report("division by zero");
else
lc/=rc;
break;
case BS: lc%=rc; break;
case '<': lc= lc<rc ? -1L : 0L; break;
case '>': lc= lc>rc ? -1L : 0L; break;
case LE: lc= lc<=rc ? -1L : 0L; break;
case GE: lc= lc>=rc ? -1L : 0L; break;
case NE: lc= lc!=rc ? -1L : 0L; break;
case '=': lc= lc==rc ? -1L : 0L; break;
case AFTER: lc= (lc-rc)>0 ? -1L : 0L; break;
case BA: lc&=rc; break;
case BO: lc|=rc; break;
case BX: lc^=rc; break;
case AND: lc= lc&&rc ? -1L : 0L; break;
case OR: lc= lc||rc ? -1L : 0L; break;
case LS: lc<<=rc; break;
case RS: lc>>=rc; break;
case '~': lc= -lc; break;
case NOT: lc= ~lc; break;
default:
report("illegal operator on constants");
}
destroy(right);
left->u.cst=lc;
return left;
} else {
register struct expr *pe;
int type=0, arr_siz=1;
switch (op) {
case '+': case '-': case '*': case '/':
case BS: case '<': case '>': case LE:
case GE: case NE: case '=': case AFTER:
case BA: case BO: case BX: case AND:
case OR: case LS: case RS:
rvalue(left);
rvalue(right);
type=T_VALUE;
break;
case '~':
case NOT:
rvalue(left);
type=T_VALUE;
break;
case AS:
assignable(left, right);
type=T_VOID;
break;
case '[':
subscriptable(left, right, byte, &type, &arr_siz);
break;
}
pe= (struct expr *) Malloc(sizeof *pe);
pe->kind=E_NODE;
pe->type=type;
pe->arr_siz=arr_siz;
pe->u.node.op=op;
pe->u.node.left=left;
pe->u.node.right=right;
return pe;
}
}
struct expr *new_var(var)
register struct symbol *var;
/* Given a variable an expression node is constructed. Note the changes in
* type! T_VAR becomes T_VALUE with flag T_LVALUE.
*/
{
register struct expr *pe;
pe= (struct expr *) Malloc(sizeof *pe);
pe->kind=E_VAR;
if ((var->s_type&T_TYPE)==T_VAR || var->s_type&T_NOTDECL) {
pe->type=(var->s_type&(~T_TYPE));
pe->type|=T_VALUE|T_LVALUE;
} else
pe->type=var->s_type;
pe->arr_siz=var->s_arr_siz;
pe->u.var=var;
return pe;
}
struct expr *new_const(cst)
long cst;
/* Make a constant, which is a VALUE, of course. */
{
register struct expr *pe;
pe= (struct expr *) Malloc(sizeof *pe);
pe->kind=E_CONST;
pe->type=T_VALUE;
pe->u.cst=cst;
return pe;
}
struct expr *new_table(kind, tab)
register kind;
register struct table *tab;
/* One table is being made, it is no doubt a VALUEd ARRay, but maybe even a
* BYTE array. A label is reserved for it and the individual elements are
* rommified.
*/
{
register struct expr *pe;
pe= (struct expr *) Malloc(sizeof *pe);
pe->kind=kind;
pe->type=T_VALUE|T_ARR;
if (kind==E_BTAB) pe->type|=T_BYTE;
dot_label(new_dot_label(&pe->u.tab));
pe->arr_siz=0;
while (tab!=nil) {
register struct table *junk=tab;
rom(kind==E_BTAB ? 1 : vz, tab->val);
tab=tab->next;
pe->arr_siz++;
free((char *)junk);
}
return pe;
}
struct expr *copy_const(e) struct expr *e;
/* If you double it up, you've got one you can throw away. (Or do something
* useful with).
*/
{
register struct expr *c;
c= (struct expr *) Malloc(sizeof *c);
*c= *e;
return c;
}
struct expr *new_now()
/* Now is the time to make a VALUE cell for the clock. */
{
register struct expr *pe;
pe= (struct expr *) Malloc(sizeof *pe);
pe->kind=E_NOW;
pe->type=T_VALUE;
return pe;
}
struct expr *new_io(out, chan, args)
int out;
register struct expr *chan;
struct expr_list *args;
/* Either c ? v0; v1; v2; ... (out=0) or c ! e0; e1; e2; ... (out=1). */
{
register struct expr *pe;
if ( ( (chan->type&T_TYPE) != T_CHAN || (chan->type&T_ARR) )
&& ! (chan->type&T_NOTDECL)
)
report("channel variable expected");
used(chan);
pe= (struct expr *) Malloc(sizeof *pe);
pe->kind=E_IO;
pe->type=T_VOID;
pe->u.io.out=out;
pe->u.io.chan=chan;
pe->u.io.args=args;
return pe;
}
struct expr *new_call(proc, args)
struct expr *proc;
struct expr_list *args;
/* Dial proc(arg1, arg2, ...) and you'll hear the tone of this function.
* Dialing yourself is not allowed, but it will work if you ignore the
* compiler generated noise.
*/
{
register struct expr *pe;
pe= (struct expr *) Malloc(sizeof *pe);
used(proc);
check_recursion(proc);
pe->kind=E_CALL;
pe->type=T_VOID;
pe->u.call.c_proc=proc;
pe->u.call.c_args=args;
return pe;
}
void table_add(aapt, val) register struct table ***aapt; long val;
/* Adds a value to a table using a hook to a hook. */
{
register struct table *pt;
pt= (struct table *) Malloc(sizeof *pt);
pt->val=val;
pt->next= **aapt;
**aapt=pt;
*aapt= &pt->next;
}
void expr_list_add(aaelp, arg)
register struct expr_list ***aaelp;
struct expr *arg;
/* Another add, this time for actual arguments and the like. */
{
register struct expr_list *elp;
elp= (struct expr_list *) Malloc(sizeof *elp);
elp->arg=arg;
elp->next= **aaelp;
**aaelp=elp;
*aaelp= &elp->next;
}
void check_io(out, arg) int out; struct expr *arg;
{
if (out)
outputable(arg);
else
inputable(arg);
}
void check_wait(e) struct expr *e;
{
if ((e->type&T_TYPE)!=T_VALUE)
report("WAIT process needs valued operand");
}
static void assigned(e) register struct expr *e;
/* Tries to tell e that it is assigned to. */
{
if (e->kind==E_VAR || (e->kind==E_NODE && e->u.node.op=='['
&& (e=e->u.node.left)->kind==E_VAR)
) {
register struct symbol *var;
if ((var=e->u.var)->s_type&T_REP) {
warning("replicator index %s may not be assigned",
var->s_name);
var->s_type&= ~T_REP;
}
var->s_type|=T_ASSIGNED;
}
}
void used(e) register struct expr *e;
{
if (e->kind==E_VAR || (e->kind==E_NODE && e->u.node.op=='['
&& (e=e->u.node.left)->kind==E_VAR)
) {
register struct symbol *var;
if ( ! ( (var=e->u.var)->s_type&(T_ASSIGNED|T_BUILTIN))
&& (var->s_type&T_TYPE)==T_VAR
&& var->s_info.vc.st.level==curr_level)
warning("%s used before assigned", var->s_name);
var->s_type|=(T_USED|T_ASSIGNED);
}
}
static void rvalue(e) register struct expr *e;
{
if ((e->type&T_TYPE)!=T_VALUE || e->type&T_ARR)
report("illegal operand of arithmetic operator");
used(e);
}
static void assignable(l, r) register struct expr *l, *r;
/* See if l can be assigned r. */
{
if ( ! ( (l->type&T_LVALUE && (r->type&T_TYPE)==T_VALUE
&& (l->type&T_ARR)==(r->type&T_ARR))
|| (l->type|r->type)&T_NOTDECL
))
report("operands of assignment are not conformable");
else
if (l->type&T_ARR && ! ( (l->type|r->type)&T_NOTDECL ) ) {
register lsiz=l->arr_siz, rsiz=r->arr_siz;
if (lsiz!=0 && rsiz!=0 && lsiz!=rsiz)
report("arrays have incompatible sizes");
}
used(r);
assigned(l);
}
static void inputable(e) struct expr *e;
{
if ( ! (e->type&T_LVALUE) )
report("operand of input process can't be assigned");
assigned(e);
}
static void outputable(e) struct expr *e;
{
if ( ! ( (e->type&T_TYPE)==T_VALUE ) )
report("operand of output process has no value");
used(e);
}
static void subscriptable(l, r, byte, atype, arr_siz)
register struct expr *l, *r;
register byte;
int *atype, *arr_siz;
/* Tries to subscript l by r, returning type and array size for slices. */
{
register type= (l->type&T_TYPE)|byte;
if ( !(l->type&(T_ARR|T_NOTDECL) ) )
report("indexing on a non-array");
else
if ( ! ( (r->type&T_TYPE)==T_VALUE
|| (r->kind==E_NODE && r->u.node.op==FOR)
) )
report("index is not computable");
type|=(l->type&T_LVALUE);
if (r->kind==E_NODE && r->u.node.op==FOR) {
type|=T_ARR;
if (r->u.node.right->kind!=E_CONST)
report("slice must be of constant size");
else
*arr_siz=r->u.node.right->u.cst;
used(r->u.node.left);
} else
used(r);
*atype=type;
}
void check_param(aform, act, err)
struct par_list **aform;
register struct expr *act;
int *err;
/* Test if formal parameter *aform corresponds with actual act. Err returns
* error status. The aform hook is set to the next formal after the check.
*/
{
register struct par_list *form= *aform;
register struct expr *left;
register struct symbol *var;
static char NONCORR[]="actual and formal parameter don't correspond";
if (form==nil) {
if (! *err) {
report("too many actual parameters");
*err=1;
}
return;
}
if ((form->pr_type&T_ARR)!=(act->type&T_ARR) && !(act->type&T_NOTDECL) ) {
report(NONCORR);
} else {
switch (form->pr_type&T_TYPE) {
case T_VAR:
if ( ! (
(act->type&T_TYPE)==T_VALUE
&& act->type&T_LVALUE
&& !(act->type&T_BYTE)
))
report(NONCORR);
assigned(act);
used(act);
break;
case T_CHAN:
if((act->type&T_TYPE)!=T_CHAN && !(act->type&T_NOTDECL))
report(NONCORR);
used(act);
break;
case T_VALUE:
if ((act->type&T_TYPE)!=T_VALUE)
report(NONCORR);
used(act);
break;
}
}
*aform= form->pr_next;
}
void destroy(e) register struct expr *e;
/* Opposite of making. */
{
if (e!=nil) {
switch (e->kind) {
case E_NODE:
destroy(e->u.node.left);
destroy(e->u.node.right);
break;
case E_IO:
case E_CALL:
destroy(e->kind==E_IO ? e->u.io.chan : e->u.call.c_proc);
{
register struct expr_list *elp, *junk;
elp= e->kind==E_IO ? e->u.io.args : e->u.call.c_args;
while (elp!=nil) {
destroy(elp->arg);
junk=elp;
elp=elp->next;
free((char *)junk);
}
}
break;
}
free((char *)e);
}
}