ack/plat/linuxppc/emu/main.c
2018-06-17 10:22:20 +02:00

258 lines
5.5 KiB
C
Executable file

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <errno.h>
#include "emu.h"
#define RAM_BASE 0x10000000
#define RAM_TOP 0x10100000
#define BRK_TOP (RAM_TOP - 0x1000)
#define INIT_SP RAM_TOP
#define INIT_PC 0x08000054
#define EXIT_PC 0xdeaddead
/* Read/write macros */
#define READ_BYTE(BASE, ADDR) (BASE)[ADDR]
#define READ_WORD(BASE, ADDR) (((BASE)[ADDR]<<8) | \
(BASE)[(ADDR)+1])
#define READ_LONG(BASE, ADDR) (((BASE)[ADDR]<<24) | \
((BASE)[(ADDR)+1]<<16) | \
((BASE)[(ADDR)+2]<<8) | \
(BASE)[(ADDR)+3])
#define WRITE_BYTE(BASE, ADDR, VAL) (BASE)[ADDR] = (VAL)&0xff
#define WRITE_WORD(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>8) & 0xff; \
(BASE)[(ADDR)+1] = (VAL)&0xff
#define WRITE_LONG(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>24) & 0xff; \
(BASE)[(ADDR)+1] = ((VAL)>>16)&0xff; \
(BASE)[(ADDR)+2] = ((VAL)>>8)&0xff; \
(BASE)[(ADDR)+3] = (VAL)&0xff
static void emulated_syscall(void);
static unsigned char ram[RAM_TOP - RAM_BASE];
uint32_t brkbase = RAM_BASE;
uint32_t brkpos = RAM_BASE;
uint32_t entrypoint = RAM_BASE;
void fatal(char* fmt, ...)
{
static bool guard = false;
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
va_end(ap);
if (!guard)
{
guard = true;
dump_state(stderr);
}
exit(EXIT_FAILURE);
}
static uint32_t transform_address(uint32_t address)
{
uint32_t a = address - RAM_BASE;
if (a >= (RAM_TOP-RAM_BASE))
fatal("address 0x%x out of bounds", address);
return a;
}
uint64_t read_double(uint32_t address)
{
return ((uint64_t)read_long(address+0) << 32) | read_long(address+4);
}
uint32_t read_long(uint32_t address)
{
uint32_t v = READ_LONG(ram, transform_address(address));
#if 0
fprintf(stderr, "read 0x%08x: 0x%08x\n", address, v);
#endif
return v;
}
uint32_t read_word(uint32_t address)
{
return READ_WORD(ram, transform_address(address));
}
uint32_t read_byte(uint32_t address)
{
return READ_BYTE(ram, transform_address(address));
}
void write_byte(uint32_t address, uint32_t value)
{
WRITE_BYTE(ram, transform_address(address), value);
}
void write_word(uint32_t address, uint32_t value)
{
WRITE_WORD(ram, transform_address(address), value);
}
void write_long(uint32_t address, uint32_t value)
{
#if 0
fprintf(stderr, "write 0x%08x: 0x%08x\n", address, value);
#endif
WRITE_LONG(ram, transform_address(address), value);
}
void write_double(uint32_t address, uint64_t value)
{
write_long(address+0, value>>32);
write_long(address+4, value);
}
void system_call(uint8_t trapno)
{
cpu.cr &= ~(1<<28); /* reset summary overflow (for success) */
switch (cpu.gpr[0])
{
case 1: /* exit */
exit(cpu.gpr[3]);
case 4: /* write */
{
int fd = cpu.gpr[3];
uint32_t address = cpu.gpr[4];
uint32_t len = cpu.gpr[5];
void* ptr = ram + transform_address(address);
transform_address(address+len); /* bounds check */
cpu.gpr[3] = write(fd, ptr, len);
if (cpu.gpr[3] == -1)
goto error;
break;
}
case 45: /* brk */
{
uint32_t newpos = cpu.gpr[3];
if (newpos == 0)
cpu.gpr[3] = brkpos;
else if ((newpos < brkbase) || (newpos >= BRK_TOP))
cpu.gpr[3] = -ENOMEM;
else
{
brkpos = newpos;
cpu.gpr[3] = 0;
}
break;
}
case 20: /* getpid */
case 48: /* signal */
case 54: /* ioctl */
case 67: /* sigaction */
case 78: /* gettimeofday */
case 126: /* sigprocmask */
cpu.gpr[3] = 0;
break;
error:
cpu.gpr[3] = errno;
cpu.cr |= (1<<28); /* set summary overflow (for failure) */
return;
default:
fatal("unimplemented system call %d", cpu.gpr[0]);
}
}
static void load_program(FILE* fd)
{
fseek(fd, 0, SEEK_SET);
if (fread(ram, 1, 0x34, fd) != 0x34)
fatal("couldn't read ELF header");
uint32_t phoff = READ_LONG(ram, 0x1c);
uint16_t phentsize = READ_WORD(ram, 0x2a);
uint16_t phnum = READ_WORD(ram, 0x2c);
entrypoint = READ_LONG(ram, 0x18);
if ((phentsize != 0x20) || (phnum != 1))
fatal("unsupported ELF file");
fseek(fd, phoff, SEEK_SET);
if (fread(ram, 1, phentsize, fd) != phentsize)
fatal("couldn't read program header");
uint32_t offset = READ_LONG(ram, 0x04);
uint32_t vaddr = READ_LONG(ram, 0x08);
uint32_t filesz = READ_LONG(ram, 0x10);
uint32_t memsz = READ_LONG(ram, 0x14);
brkbase = brkpos = vaddr + memsz;
uint32_t vaddroffset = transform_address(vaddr);
transform_address(vaddr + memsz); /* bounds check */
memset(ram+vaddroffset, 0, memsz);
fseek(fd, offset, SEEK_SET);
if (fread(ram+vaddroffset, 1, filesz, fd) != filesz)
fatal("couldn't read program data");
}
/* The main loop */
int main(int argc, char* argv[])
{
if(argc != 2)
fatal("syntax: emuppc <program file>");
FILE* fd = fopen(argv[1], "rb");
if (!fd)
fatal("Unable to open %s", argv[1]);
load_program(fd);
fclose(fd);
/* On entry, the Linux stack looks like this.
*
* sp+.. NULL
* sp+8+(4*argc) env (X quads)
* sp+4+(4*argc) NULL
* sp+4 argv (argc quads)
* sp argc
*
* We'll set it up with a bodgy stack frame with argc=0 just to keep the
* startup code happy.
*/
{
uint32_t sp = INIT_SP;
write_long(sp -= 4, 0);
uint32_t envp = sp;
write_long(sp -= 4, envp);
write_long(sp -= 4, 0);
unsigned long argv = sp;
write_long(sp -= 4, argv);
write_long(sp -= 4, 0);
cpu.gpr[1] = sp;
cpu.cia = entrypoint;
}
cpu.lr = EXIT_PC;
while (cpu.cia != EXIT_PC)
{
#if 0
dump_state(stderr);
#endif
single_step();
}
return 0;
}