2446 lines
64 KiB
Groff
2446 lines
64 KiB
Groff
.TH FLEX 1 "26 May 1990" "Version 2.3"
|
|
.SH NAME
|
|
flex - fast lexical analyzer generator
|
|
.SH SYNOPSIS
|
|
.B flex
|
|
.B [-bcdfinpstvFILT8 -C[efmF] -Sskeleton]
|
|
.I [filename ...]
|
|
.SH DESCRIPTION
|
|
.I flex
|
|
is a tool for generating
|
|
.I scanners:
|
|
programs which recognized lexical patterns in text.
|
|
.I flex
|
|
reads
|
|
the given input files, or its standard input if no file names are given,
|
|
for a description of a scanner to generate. The description is in
|
|
the form of pairs
|
|
of regular expressions and C code, called
|
|
.I rules. flex
|
|
generates as output a C source file,
|
|
.B lex.yy.c,
|
|
which defines a routine
|
|
.B yylex().
|
|
This file is compiled and linked with the
|
|
.B -lfl
|
|
library to produce an executable. When the executable is run,
|
|
it analyzes its input for occurrences
|
|
of the regular expressions. Whenever it finds one, it executes
|
|
the corresponding C code.
|
|
.SH SOME SIMPLE EXAMPLES
|
|
.LP
|
|
First some simple examples to get the flavor of how one uses
|
|
.I flex.
|
|
The following
|
|
.I flex
|
|
input specifies a scanner which whenever it encounters the string
|
|
"username" will replace it with the user's login name:
|
|
.nf
|
|
|
|
%%
|
|
username printf( "%s", getlogin() );
|
|
|
|
.fi
|
|
By default, any text not matched by a
|
|
.I flex
|
|
scanner
|
|
is copied to the output, so the net effect of this scanner is
|
|
to copy its input file to its output with each occurrence
|
|
of "username" expanded.
|
|
In this input, there is just one rule. "username" is the
|
|
.I pattern
|
|
and the "printf" is the
|
|
.I action.
|
|
The "%%" marks the beginning of the rules.
|
|
.LP
|
|
Here's another simple example:
|
|
.nf
|
|
|
|
int num_lines = 0, num_chars = 0;
|
|
|
|
%%
|
|
\\n ++num_lines; ++num_chars;
|
|
. ++num_chars;
|
|
|
|
%%
|
|
main()
|
|
{
|
|
yylex();
|
|
printf( "# of lines = %d, # of chars = %d\\n",
|
|
num_lines, num_chars );
|
|
}
|
|
|
|
.fi
|
|
This scanner counts the number of characters and the number
|
|
of lines in its input (it produces no output other than the
|
|
final report on the counts). The first line
|
|
declares two globals, "num_lines" and "num_chars", which are accessible
|
|
both inside
|
|
.B yylex()
|
|
and in the
|
|
.B main()
|
|
routine declared after the second "%%". There are two rules, one
|
|
which matches a newline ("\\n") and increments both the line count and
|
|
the character count, and one which matches any character other than
|
|
a newline (indicated by the "." regular expression).
|
|
.LP
|
|
A somewhat more complicated example:
|
|
.nf
|
|
|
|
/* scanner for a toy Pascal-like language */
|
|
|
|
%{
|
|
/* need this for the call to atof() below */
|
|
#include <math.h>
|
|
%}
|
|
|
|
DIGIT [0-9]
|
|
ID [a-z][a-z0-9]*
|
|
|
|
%%
|
|
|
|
{DIGIT}+ {
|
|
printf( "An integer: %s (%d)\\n", yytext,
|
|
atoi( yytext ) );
|
|
}
|
|
|
|
{DIGIT}+"."{DIGIT}* {
|
|
printf( "A float: %s (%g)\\n", yytext,
|
|
atof( yytext ) );
|
|
}
|
|
|
|
if|then|begin|end|procedure|function {
|
|
printf( "A keyword: %s\\n", yytext );
|
|
}
|
|
|
|
{ID} printf( "An identifier: %s\\n", yytext );
|
|
|
|
"+"|"-"|"*"|"/" printf( "An operator: %s\\n", yytext );
|
|
|
|
"{"[^}\\n]*"}" /* eat up one-line comments */
|
|
|
|
[ \\t\\n]+ /* eat up whitespace */
|
|
|
|
. printf( "Unrecognized character: %s\\n", yytext );
|
|
|
|
%%
|
|
|
|
main( argc, argv )
|
|
int argc;
|
|
char **argv;
|
|
{
|
|
++argv, --argc; /* skip over program name */
|
|
if ( argc > 0 )
|
|
yyin = fopen( argv[0], "r" );
|
|
else
|
|
yyin = stdin;
|
|
|
|
yylex();
|
|
}
|
|
|
|
.fi
|
|
This is the beginnings of a simple scanner for a language like
|
|
Pascal. It identifies different types of
|
|
.I tokens
|
|
and reports on what it has seen.
|
|
.LP
|
|
The details of this example will be explained in the following
|
|
sections.
|
|
.SH FORMAT OF THE INPUT FILE
|
|
The
|
|
.I flex
|
|
input file consists of three sections, separated by a line with just
|
|
.B %%
|
|
in it:
|
|
.nf
|
|
|
|
definitions
|
|
%%
|
|
rules
|
|
%%
|
|
user code
|
|
|
|
.fi
|
|
The
|
|
.I definitions
|
|
section contains declarations of simple
|
|
.I name
|
|
definitions to simplify the scanner specification, and declarations of
|
|
.I start conditions,
|
|
which are explained in a later section.
|
|
.LP
|
|
Name definitions have the form:
|
|
.nf
|
|
|
|
name definition
|
|
|
|
.fi
|
|
The "name" is a word beginning with a letter or an underscore ('_')
|
|
followed by zero or more letters, digits, '_', or '-' (dash).
|
|
The definition is taken to begin at the first non-white-space character
|
|
following the name and continuing to the end of the line.
|
|
The definition can subsequently be referred to using "{name}", which
|
|
will expand to "(definition)". For example,
|
|
.nf
|
|
|
|
DIGIT [0-9]
|
|
ID [a-z][a-z0-9]*
|
|
|
|
.fi
|
|
defines "DIGIT" to be a regular expression which matches a
|
|
single digit, and
|
|
"ID" to be a regular expression which matches a letter
|
|
followed by zero-or-more letters-or-digits.
|
|
A subsequent reference to
|
|
.nf
|
|
|
|
{DIGIT}+"."{DIGIT}*
|
|
|
|
.fi
|
|
is identical to
|
|
.nf
|
|
|
|
([0-9])+"."([0-9])*
|
|
|
|
.fi
|
|
and matches one-or-more digits followed by a '.' followed
|
|
by zero-or-more digits.
|
|
.LP
|
|
The
|
|
.I rules
|
|
section of the
|
|
.I flex
|
|
input contains a series of rules of the form:
|
|
.nf
|
|
|
|
pattern action
|
|
|
|
.fi
|
|
where the pattern must be unindented and the action must begin
|
|
on the same line.
|
|
.LP
|
|
See below for a further description of patterns and actions.
|
|
.LP
|
|
Finally, the user code section is simply copied to
|
|
.B lex.yy.c
|
|
verbatim.
|
|
It is used for companion routines which call or are called
|
|
by the scanner. The presence of this section is optional;
|
|
if it is missing, the second
|
|
.B %%
|
|
in the input file may be skipped, too.
|
|
.LP
|
|
In the definitions and rules sections, any
|
|
.I indented
|
|
text or text enclosed in
|
|
.B %{
|
|
and
|
|
.B %}
|
|
is copied verbatim to the output (with the %{}'s removed).
|
|
The %{}'s must appear unindented on lines by themselves.
|
|
.LP
|
|
In the rules section,
|
|
any indented or %{} text appearing before the
|
|
first rule may be used to declare variables
|
|
which are local to the scanning routine and (after the declarations)
|
|
code which is to be executed whenever the scanning routine is entered.
|
|
Other indented or %{} text in the rule section is still copied to the output,
|
|
but its meaning is not well-defined and it may well cause compile-time
|
|
errors (this feature is present for
|
|
.I POSIX
|
|
compliance; see below for other such features).
|
|
.LP
|
|
In the definitions section, an unindented comment (i.e., a line
|
|
beginning with "/*") is also copied verbatim to the output up
|
|
to the next "*/". Also, any line in the definitions section
|
|
beginning with '#' is ignored, though this style of comment is
|
|
deprecated and may go away in the future.
|
|
.SH PATTERNS
|
|
The patterns in the input are written using an extended set of regular
|
|
expressions. These are:
|
|
.nf
|
|
|
|
x match the character 'x'
|
|
. any character except newline
|
|
[xyz] a "character class"; in this case, the pattern
|
|
matches either an 'x', a 'y', or a 'z'
|
|
[abj-oZ] a "character class" with a range in it; matches
|
|
an 'a', a 'b', any letter from 'j' through 'o',
|
|
or a 'Z'
|
|
[^A-Z] a "negated character class", i.e., any character
|
|
but those in the class. In this case, any
|
|
character EXCEPT an uppercase letter.
|
|
[^A-Z\\n] any character EXCEPT an uppercase letter or
|
|
a newline
|
|
r* zero or more r's, where r is any regular expression
|
|
r+ one or more r's
|
|
r? zero or one r's (that is, "an optional r")
|
|
r{2,5} anywhere from two to five r's
|
|
r{2,} two or more r's
|
|
r{4} exactly 4 r's
|
|
{name} the expansion of the "name" definition
|
|
(see above)
|
|
"[xyz]\\"foo"
|
|
the literal string: [xyz]"foo
|
|
\\X if X is an 'a', 'b', 'f', 'n', 'r', 't', or 'v',
|
|
then the ANSI-C interpretation of \\x.
|
|
Otherwise, a literal 'X' (used to escape
|
|
operators such as '*')
|
|
\\123 the character with octal value 123
|
|
\\x2a the character with hexadecimal value 2a
|
|
(r) match an r; parentheses are used to override
|
|
precedence (see below)
|
|
|
|
|
|
rs the regular expression r followed by the
|
|
regular expression s; called "concatenation"
|
|
|
|
|
|
r|s either an r or an s
|
|
|
|
|
|
r/s an r but only if it is followed by an s. The
|
|
s is not part of the matched text. This type
|
|
of pattern is called as "trailing context".
|
|
^r an r, but only at the beginning of a line
|
|
r$ an r, but only at the end of a line. Equivalent
|
|
to "r/\\n".
|
|
|
|
|
|
<s>r an r, but only in start condition s (see
|
|
below for discussion of start conditions)
|
|
<s1,s2,s3>r
|
|
same, but in any of start conditions s1,
|
|
s2, or s3
|
|
|
|
|
|
<<EOF>> an end-of-file
|
|
<s1,s2><<EOF>>
|
|
an end-of-file when in start condition s1 or s2
|
|
|
|
.fi
|
|
The regular expressions listed above are grouped according to
|
|
precedence, from highest precedence at the top to lowest at the bottom.
|
|
Those grouped together have equal precedence. For example,
|
|
.nf
|
|
|
|
foo|bar*
|
|
|
|
.fi
|
|
is the same as
|
|
.nf
|
|
|
|
(foo)|(ba(r*))
|
|
|
|
.fi
|
|
since the '*' operator has higher precedence than concatenation,
|
|
and concatenation higher than alternation ('|'). This pattern
|
|
therefore matches
|
|
.I either
|
|
the string "foo"
|
|
.I or
|
|
the string "ba" followed by zero-or-more r's.
|
|
To match "foo" or zero-or-more "bar"'s, use:
|
|
.nf
|
|
|
|
foo|(bar)*
|
|
|
|
.fi
|
|
and to match zero-or-more "foo"'s-or-"bar"'s:
|
|
.nf
|
|
|
|
(foo|bar)*
|
|
|
|
.fi
|
|
.LP
|
|
Some notes on patterns:
|
|
.IP -
|
|
A negated character class such as the example "[^A-Z]"
|
|
above
|
|
.I will match a newline
|
|
unless "\\n" (or an equivalent escape sequence) is one of the
|
|
characters explicitly present in the negated character class
|
|
(e.g., "[^A-Z\\n]"). This is unlike how many other regular
|
|
expression tools treat negated character classes, but unfortunately
|
|
the inconsistency is historically entrenched.
|
|
Matching newlines means that a pattern like [^"]* can match an entire
|
|
input (overflowing the scanner's input buffer) unless there's another
|
|
quote in the input.
|
|
.IP -
|
|
A rule can have at most one instance of trailing context (the '/' operator
|
|
or the '$' operator). The start condition, '^', and "<<EOF>>" patterns
|
|
can only occur at the beginning of a pattern, and, as well as with '/' and '$',
|
|
cannot be grouped inside parentheses. A '^' which does not occur at
|
|
the beginning of a rule or a '$' which does not occur at the end of
|
|
a rule loses its special properties and is treated as a normal character.
|
|
.IP
|
|
The following are illegal:
|
|
.nf
|
|
|
|
foo/bar$
|
|
<sc1>foo<sc2>bar
|
|
|
|
.fi
|
|
Note that the first of these, can be written "foo/bar\\n".
|
|
.IP
|
|
The following will result in '$' or '^' being treated as a normal character:
|
|
.nf
|
|
|
|
foo|(bar$)
|
|
foo|^bar
|
|
|
|
.fi
|
|
If what's wanted is a "foo" or a bar-followed-by-a-newline, the following
|
|
could be used (the special '|' action is explained below):
|
|
.nf
|
|
|
|
foo |
|
|
bar$ /* action goes here */
|
|
|
|
.fi
|
|
A similar trick will work for matching a foo or a
|
|
bar-at-the-beginning-of-a-line.
|
|
.SH HOW THE INPUT IS MATCHED
|
|
When the generated scanner is run, it analyzes its input looking
|
|
for strings which match any of its patterns. If it finds more than
|
|
one match, it takes the one matching the most text (for trailing
|
|
context rules, this includes the length of the trailing part, even
|
|
though it will then be returned to the input). If it finds two
|
|
or more matches of the same length, the
|
|
rule listed first in the
|
|
.I flex
|
|
input file is chosen.
|
|
.LP
|
|
Once the match is determined, the text corresponding to the match
|
|
(called the
|
|
.I token)
|
|
is made available in the global character pointer
|
|
.B yytext,
|
|
and its length in the global integer
|
|
.B yyleng.
|
|
The
|
|
.I action
|
|
corresponding to the matched pattern is then executed (a more
|
|
detailed description of actions follows), and then the remaining
|
|
input is scanned for another match.
|
|
.LP
|
|
If no match is found, then the
|
|
.I default rule
|
|
is executed: the next character in the input is considered matched and
|
|
copied to the standard output. Thus, the simplest legal
|
|
.I flex
|
|
input is:
|
|
.nf
|
|
|
|
%%
|
|
|
|
.fi
|
|
which generates a scanner that simply copies its input (one character
|
|
at a time) to its output.
|
|
.SH ACTIONS
|
|
Each pattern in a rule has a corresponding action, which can be any
|
|
arbitrary C statement. The pattern ends at the first non-escaped
|
|
whitespace character; the remainder of the line is its action. If the
|
|
action is empty, then when the pattern is matched the input token
|
|
is simply discarded. For example, here is the specification for a program
|
|
which deletes all occurrences of "zap me" from its input:
|
|
.nf
|
|
|
|
%%
|
|
"zap me"
|
|
|
|
.fi
|
|
(It will copy all other characters in the input to the output since
|
|
they will be matched by the default rule.)
|
|
.LP
|
|
Here is a program which compresses multiple blanks and tabs down to
|
|
a single blank, and throws away whitespace found at the end of a line:
|
|
.nf
|
|
|
|
%%
|
|
[ \\t]+ putchar( ' ' );
|
|
[ \\t]+$ /* ignore this token */
|
|
|
|
.fi
|
|
.LP
|
|
If the action contains a '{', then the action spans till the balancing '}'
|
|
is found, and the action may cross multiple lines.
|
|
.I flex
|
|
knows about C strings and comments and won't be fooled by braces found
|
|
within them, but also allows actions to begin with
|
|
.B %{
|
|
and will consider the action to be all the text up to the next
|
|
.B %}
|
|
(regardless of ordinary braces inside the action).
|
|
.LP
|
|
An action consisting solely of a vertical bar ('|') means "same as
|
|
the action for the next rule." See below for an illustration.
|
|
.LP
|
|
Actions can include arbitrary C code, including
|
|
.B return
|
|
statements to return a value to whatever routine called
|
|
.B yylex().
|
|
Each time
|
|
.B yylex()
|
|
is called it continues processing tokens from where it last left
|
|
off until it either reaches
|
|
the end of the file or executes a return. Once it reaches an end-of-file,
|
|
however, then any subsequent call to
|
|
.B yylex()
|
|
will simply immediately return, unless
|
|
.B yyrestart()
|
|
is first called (see below).
|
|
.LP
|
|
Actions are not allowed to modify yytext or yyleng.
|
|
.LP
|
|
There are a number of special directives which can be included within
|
|
an action:
|
|
.IP -
|
|
.B ECHO
|
|
copies yytext to the scanner's output.
|
|
.IP -
|
|
.B BEGIN
|
|
followed by the name of a start condition places the scanner in the
|
|
corresponding start condition (see below).
|
|
.IP -
|
|
.B REJECT
|
|
directs the scanner to proceed on to the "second best" rule which matched the
|
|
input (or a prefix of the input). The rule is chosen as described
|
|
above in "How the Input is Matched", and
|
|
.B yytext
|
|
and
|
|
.B yyleng
|
|
set up appropriately.
|
|
It may either be one which matched as much text
|
|
as the originally chosen rule but came later in the
|
|
.I flex
|
|
input file, or one which matched less text.
|
|
For example, the following will both count the
|
|
words in the input and call the routine special() whenever "frob" is seen:
|
|
.nf
|
|
|
|
int word_count = 0;
|
|
%%
|
|
|
|
frob special(); REJECT;
|
|
[^ \\t\\n]+ ++word_count;
|
|
|
|
.fi
|
|
Without the
|
|
.B REJECT,
|
|
any "frob"'s in the input would not be counted as words, since the
|
|
scanner normally executes only one action per token.
|
|
Multiple
|
|
.B REJECT's
|
|
are allowed, each one finding the next best choice to the currently
|
|
active rule. For example, when the following scanner scans the token
|
|
"abcd", it will write "abcdabcaba" to the output:
|
|
.nf
|
|
|
|
%%
|
|
a |
|
|
ab |
|
|
abc |
|
|
abcd ECHO; REJECT;
|
|
.|\\n /* eat up any unmatched character */
|
|
|
|
.fi
|
|
(The first three rules share the fourth's action since they use
|
|
the special '|' action.)
|
|
.B REJECT
|
|
is a particularly expensive feature in terms scanner performance;
|
|
if it is used in
|
|
.I any
|
|
of the scanner's actions it will slow down
|
|
.I all
|
|
of the scanner's matching. Furthermore,
|
|
.B REJECT
|
|
cannot be used with the
|
|
.I -f
|
|
or
|
|
.I -F
|
|
options (see below).
|
|
.IP
|
|
Note also that unlike the other special actions,
|
|
.B REJECT
|
|
is a
|
|
.I branch;
|
|
code immediately following it in the action will
|
|
.I not
|
|
be executed.
|
|
.IP -
|
|
.B yymore()
|
|
tells the scanner that the next time it matches a rule, the corresponding
|
|
token should be
|
|
.I appended
|
|
onto the current value of
|
|
.B yytext
|
|
rather than replacing it. For example, given the input "mega-kludge"
|
|
the following will write "mega-mega-kludge" to the output:
|
|
.nf
|
|
|
|
%%
|
|
mega- ECHO; yymore();
|
|
kludge ECHO;
|
|
|
|
.fi
|
|
First "mega-" is matched and echoed to the output. Then "kludge"
|
|
is matched, but the previous "mega-" is still hanging around at the
|
|
beginning of
|
|
.B yytext
|
|
so the
|
|
.B ECHO
|
|
for the "kludge" rule will actually write "mega-kludge".
|
|
The presence of
|
|
.B yymore()
|
|
in the scanner's action entails a minor performance penalty in the
|
|
scanner's matching speed.
|
|
.IP -
|
|
.B yyless(n)
|
|
returns all but the first
|
|
.I n
|
|
characters of the current token back to the input stream, where they
|
|
will be rescanned when the scanner looks for the next match.
|
|
.B yytext
|
|
and
|
|
.B yyleng
|
|
are adjusted appropriately (e.g.,
|
|
.B yyleng
|
|
will now be equal to
|
|
.I n
|
|
). For example, on the input "foobar" the following will write out
|
|
"foobarbar":
|
|
.nf
|
|
|
|
%%
|
|
foobar ECHO; yyless(3);
|
|
[a-z]+ ECHO;
|
|
|
|
.fi
|
|
An argument of 0 to
|
|
.B yyless
|
|
will cause the entire current input string to be scanned again. Unless you've
|
|
changed how the scanner will subsequently process its input (using
|
|
.B BEGIN,
|
|
for example), this will result in an endless loop.
|
|
.IP -
|
|
.B unput(c)
|
|
puts the character
|
|
.I c
|
|
back onto the input stream. It will be the next character scanned.
|
|
The following action will take the current token and cause it
|
|
to be rescanned enclosed in parentheses.
|
|
.nf
|
|
|
|
{
|
|
int i;
|
|
unput( ')' );
|
|
for ( i = yyleng - 1; i >= 0; --i )
|
|
unput( yytext[i] );
|
|
unput( '(' );
|
|
}
|
|
|
|
.fi
|
|
Note that since each
|
|
.B unput()
|
|
puts the given character back at the
|
|
.I beginning
|
|
of the input stream, pushing back strings must be done back-to-front.
|
|
.IP -
|
|
.B input()
|
|
reads the next character from the input stream. For example,
|
|
the following is one way to eat up C comments:
|
|
.nf
|
|
|
|
%%
|
|
"/*" {
|
|
register int c;
|
|
|
|
for ( ; ; )
|
|
{
|
|
while ( (c = input()) != '*' &&
|
|
c != EOF )
|
|
; /* eat up text of comment */
|
|
|
|
if ( c == '*' )
|
|
{
|
|
while ( (c = input()) == '*' )
|
|
;
|
|
if ( c == '/' )
|
|
break; /* found the end */
|
|
}
|
|
|
|
if ( c == EOF )
|
|
{
|
|
error( "EOF in comment" );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
.fi
|
|
(Note that if the scanner is compiled using
|
|
.B C++,
|
|
then
|
|
.B input()
|
|
is instead referred to as
|
|
.B yyinput(),
|
|
in order to avoid a name clash with the
|
|
.B C++
|
|
stream by the name of
|
|
.I input.)
|
|
.IP -
|
|
.B yyterminate()
|
|
can be used in lieu of a return statement in an action. It terminates
|
|
the scanner and returns a 0 to the scanner's caller, indicating "all done".
|
|
Subsequent calls to the scanner will immediately return unless preceded
|
|
by a call to
|
|
.B yyrestart()
|
|
(see below).
|
|
By default,
|
|
.B yyterminate()
|
|
is also called when an end-of-file is encountered. It is a macro and
|
|
may be redefined.
|
|
.SH THE GENERATED SCANNER
|
|
The output of
|
|
.I flex
|
|
is the file
|
|
.B lex.yy.c,
|
|
which contains the scanning routine
|
|
.B yylex(),
|
|
a number of tables used by it for matching tokens, and a number
|
|
of auxiliary routines and macros. By default,
|
|
.B yylex()
|
|
is declared as follows:
|
|
.nf
|
|
|
|
int yylex()
|
|
{
|
|
... various definitions and the actions in here ...
|
|
}
|
|
|
|
.fi
|
|
(If your environment supports function prototypes, then it will
|
|
be "int yylex( void )".) This definition may be changed by redefining
|
|
the "YY_DECL" macro. For example, you could use:
|
|
.nf
|
|
|
|
#undef YY_DECL
|
|
#define YY_DECL float lexscan( a, b ) float a, b;
|
|
|
|
.fi
|
|
to give the scanning routine the name
|
|
.I lexscan,
|
|
returning a float, and taking two floats as arguments. Note that
|
|
if you give arguments to the scanning routine using a
|
|
K&R-style/non-prototyped function declaration, you must terminate
|
|
the definition with a semi-colon (;).
|
|
.LP
|
|
Whenever
|
|
.B yylex()
|
|
is called, it scans tokens from the global input file
|
|
.I yyin
|
|
(which defaults to stdin). It continues until it either reaches
|
|
an end-of-file (at which point it returns the value 0) or
|
|
one of its actions executes a
|
|
.I return
|
|
statement.
|
|
In the former case, when called again the scanner will immediately
|
|
return unless
|
|
.B yyrestart()
|
|
is called to point
|
|
.I yyin
|
|
at the new input file. (
|
|
.B yyrestart()
|
|
takes one argument, a
|
|
.B FILE *
|
|
pointer.)
|
|
In the latter case (i.e., when an action
|
|
executes a return), the scanner may then be called again and it
|
|
will resume scanning where it left off.
|
|
.LP
|
|
By default (and for purposes of efficiency), the scanner uses
|
|
block-reads rather than simple
|
|
.I getc()
|
|
calls to read characters from
|
|
.I yyin.
|
|
The nature of how it gets its input can be controlled by redefining the
|
|
.B YY_INPUT
|
|
macro.
|
|
YY_INPUT's calling sequence is "YY_INPUT(buf,result,max_size)". Its
|
|
action is to place up to
|
|
.I max_size
|
|
characters in the character array
|
|
.I buf
|
|
and return in the integer variable
|
|
.I result
|
|
either the
|
|
number of characters read or the constant YY_NULL (0 on Unix systems)
|
|
to indicate EOF. The default YY_INPUT reads from the
|
|
global file-pointer "yyin".
|
|
.LP
|
|
A sample redefinition of YY_INPUT (in the definitions
|
|
section of the input file):
|
|
.nf
|
|
|
|
%{
|
|
#undef YY_INPUT
|
|
#define YY_INPUT(buf,result,max_size) \\
|
|
{ \\
|
|
int c = getchar(); \\
|
|
result = (c == EOF) ? YY_NULL : (buf[0] = c, 1); \\
|
|
}
|
|
%}
|
|
|
|
.fi
|
|
This definition will change the input processing to occur
|
|
one character at a time.
|
|
.LP
|
|
You also can add in things like keeping track of the
|
|
input line number this way; but don't expect your scanner to
|
|
go very fast.
|
|
.LP
|
|
When the scanner receives an end-of-file indication from YY_INPUT,
|
|
it then checks the
|
|
.B yywrap()
|
|
function. If
|
|
.B yywrap()
|
|
returns false (zero), then it is assumed that the
|
|
function has gone ahead and set up
|
|
.I yyin
|
|
to point to another input file, and scanning continues. If it returns
|
|
true (non-zero), then the scanner terminates, returning 0 to its
|
|
caller.
|
|
.LP
|
|
The default
|
|
.B yywrap()
|
|
always returns 1. Presently, to redefine it you must first
|
|
"#undef yywrap", as it is currently implemented as a macro. As indicated
|
|
by the hedging in the previous sentence, it may be changed to
|
|
a true function in the near future.
|
|
.LP
|
|
The scanner writes its
|
|
.B ECHO
|
|
output to the
|
|
.I yyout
|
|
global (default, stdout), which may be redefined by the user simply
|
|
by assigning it to some other
|
|
.B FILE
|
|
pointer.
|
|
.SH START CONDITIONS
|
|
.I flex
|
|
provides a mechanism for conditionally activating rules. Any rule
|
|
whose pattern is prefixed with "<sc>" will only be active when
|
|
the scanner is in the start condition named "sc". For example,
|
|
.nf
|
|
|
|
<STRING>[^"]* { /* eat up the string body ... */
|
|
...
|
|
}
|
|
|
|
.fi
|
|
will be active only when the scanner is in the "STRING" start
|
|
condition, and
|
|
.nf
|
|
|
|
<INITIAL,STRING,QUOTE>\\. { /* handle an escape ... */
|
|
...
|
|
}
|
|
|
|
.fi
|
|
will be active only when the current start condition is
|
|
either "INITIAL", "STRING", or "QUOTE".
|
|
.LP
|
|
Start conditions
|
|
are declared in the definitions (first) section of the input
|
|
using unindented lines beginning with either
|
|
.B %s
|
|
or
|
|
.B %x
|
|
followed by a list of names.
|
|
The former declares
|
|
.I inclusive
|
|
start conditions, the latter
|
|
.I exclusive
|
|
start conditions. A start condition is activated using the
|
|
.B BEGIN
|
|
action. Until the next
|
|
.B BEGIN
|
|
action is executed, rules with the given start
|
|
condition will be active and
|
|
rules with other start conditions will be inactive.
|
|
If the start condition is
|
|
.I inclusive,
|
|
then rules with no start conditions at all will also be active.
|
|
If it is
|
|
.I exclusive,
|
|
then
|
|
.I only
|
|
rules qualified with the start condition will be active.
|
|
A set of rules contingent on the same exclusive start condition
|
|
describe a scanner which is independent of any of the other rules in the
|
|
.I flex
|
|
input. Because of this,
|
|
exclusive start conditions make it easy to specify "mini-scanners"
|
|
which scan portions of the input that are syntactically different
|
|
from the rest (e.g., comments).
|
|
.LP
|
|
If the distinction between inclusive and exclusive start conditions
|
|
is still a little vague, here's a simple example illustrating the
|
|
connection between the two. The set of rules:
|
|
.nf
|
|
|
|
%s example
|
|
%%
|
|
<example>foo /* do something */
|
|
|
|
.fi
|
|
is equivalent to
|
|
.nf
|
|
|
|
%x example
|
|
%%
|
|
<INITIAL,example>foo /* do something */
|
|
|
|
.fi
|
|
.LP
|
|
The default rule (to
|
|
.B ECHO
|
|
any unmatched character) remains active in start conditions.
|
|
.LP
|
|
.B BEGIN(0)
|
|
returns to the original state where only the rules with
|
|
no start conditions are active. This state can also be
|
|
referred to as the start-condition "INITIAL", so
|
|
.B BEGIN(INITIAL)
|
|
is equivalent to
|
|
.B BEGIN(0).
|
|
(The parentheses around the start condition name are not required but
|
|
are considered good style.)
|
|
.LP
|
|
.B BEGIN
|
|
actions can also be given as indented code at the beginning
|
|
of the rules section. For example, the following will cause
|
|
the scanner to enter the "SPECIAL" start condition whenever
|
|
.I yylex()
|
|
is called and the global variable
|
|
.I enter_special
|
|
is true:
|
|
.nf
|
|
|
|
int enter_special;
|
|
|
|
%x SPECIAL
|
|
%%
|
|
if ( enter_special )
|
|
BEGIN(SPECIAL);
|
|
|
|
<SPECIAL>blahblahblah
|
|
...more rules follow...
|
|
|
|
.fi
|
|
.LP
|
|
To illustrate the uses of start conditions,
|
|
here is a scanner which provides two different interpretations
|
|
of a string like "123.456". By default it will treat it as
|
|
as three tokens, the integer "123", a dot ('.'), and the integer "456".
|
|
But if the string is preceded earlier in the line by the string
|
|
"expect-floats"
|
|
it will treat it as a single token, the floating-point number
|
|
123.456:
|
|
.nf
|
|
|
|
%{
|
|
#include <math.h>
|
|
%}
|
|
%s expect
|
|
|
|
%%
|
|
expect-floats BEGIN(expect);
|
|
|
|
<expect>[0-9]+"."[0-9]+ {
|
|
printf( "found a float, = %f\\n",
|
|
atof( yytext ) );
|
|
}
|
|
<expect>\\n {
|
|
/* that's the end of the line, so
|
|
* we need another "expect-number"
|
|
* before we'll recognize any more
|
|
* numbers
|
|
*/
|
|
BEGIN(INITIAL);
|
|
}
|
|
|
|
[0-9]+ {
|
|
printf( "found an integer, = %d\\n",
|
|
atoi( yytext ) );
|
|
}
|
|
|
|
"." printf( "found a dot\\n" );
|
|
|
|
.fi
|
|
Here is a scanner which recognizes (and discards) C comments while
|
|
maintaining a count of the current input line.
|
|
.nf
|
|
|
|
%x comment
|
|
%%
|
|
int line_num = 1;
|
|
|
|
"/*" BEGIN(comment);
|
|
|
|
<comment>[^*\\n]* /* eat anything that's not a '*' */
|
|
<comment>"*"+[^*/\\n]* /* eat up '*'s not followed by '/'s */
|
|
<comment>\\n ++line_num;
|
|
<comment>"*"+"/" BEGIN(INITIAL);
|
|
|
|
.fi
|
|
Note that start-conditions names are really integer values and
|
|
can be stored as such. Thus, the above could be extended in the
|
|
following fashion:
|
|
.nf
|
|
|
|
%x comment foo
|
|
%%
|
|
int line_num = 1;
|
|
int comment_caller;
|
|
|
|
"/*" {
|
|
comment_caller = INITIAL;
|
|
BEGIN(comment);
|
|
}
|
|
|
|
...
|
|
|
|
<foo>"/*" {
|
|
comment_caller = foo;
|
|
BEGIN(comment);
|
|
}
|
|
|
|
<comment>[^*\\n]* /* eat anything that's not a '*' */
|
|
<comment>"*"+[^*/\\n]* /* eat up '*'s not followed by '/'s */
|
|
<comment>\\n ++line_num;
|
|
<comment>"*"+"/" BEGIN(comment_caller);
|
|
|
|
.fi
|
|
One can then implement a "stack" of start conditions using an
|
|
array of integers. (It is likely that such stacks will become
|
|
a full-fledged
|
|
.I flex
|
|
feature in the future.) Note, though, that
|
|
start conditions do not have their own name-space; %s's and %x's
|
|
declare names in the same fashion as #define's.
|
|
.SH MULTIPLE INPUT BUFFERS
|
|
Some scanners (such as those which support "include" files)
|
|
require reading from several input streams. As
|
|
.I flex
|
|
scanners do a large amount of buffering, one cannot control
|
|
where the next input will be read from by simply writing a
|
|
.B YY_INPUT
|
|
which is sensitive to the scanning context.
|
|
.B YY_INPUT
|
|
is only called when the scanner reaches the end of its buffer, which
|
|
may be a long time after scanning a statement such as an "include"
|
|
which requires switching the input source.
|
|
.LP
|
|
To negotiate these sorts of problems,
|
|
.I flex
|
|
provides a mechanism for creating and switching between multiple
|
|
input buffers. An input buffer is created by using:
|
|
.nf
|
|
|
|
YY_BUFFER_STATE yy_create_buffer( FILE *file, int size )
|
|
|
|
.fi
|
|
which takes a
|
|
.I FILE
|
|
pointer and a size and creates a buffer associated with the given
|
|
file and large enough to hold
|
|
.I size
|
|
characters (when in doubt, use
|
|
.B YY_BUF_SIZE
|
|
for the size). It returns a
|
|
.B YY_BUFFER_STATE
|
|
handle, which may then be passed to other routines:
|
|
.nf
|
|
|
|
void yy_switch_to_buffer( YY_BUFFER_STATE new_buffer )
|
|
|
|
.fi
|
|
switches the scanner's input buffer so subsequent tokens will
|
|
come from
|
|
.I new_buffer.
|
|
Note that
|
|
.B yy_switch_to_buffer()
|
|
may be used by yywrap() to sets things up for continued scanning, instead
|
|
of opening a new file and pointing
|
|
.I yyin
|
|
at it.
|
|
.nf
|
|
|
|
void yy_delete_buffer( YY_BUFFER_STATE buffer )
|
|
|
|
.fi
|
|
is used to reclaim the storage associated with a buffer.
|
|
.LP
|
|
.B yy_new_buffer()
|
|
is an alias for
|
|
.B yy_create_buffer(),
|
|
provided for compatibility with the C++ use of
|
|
.I new
|
|
and
|
|
.I delete
|
|
for creating and destroying dynamic objects.
|
|
.LP
|
|
Finally, the
|
|
.B YY_CURRENT_BUFFER
|
|
macro returns a
|
|
.B YY_BUFFER_STATE
|
|
handle to the current buffer.
|
|
.LP
|
|
Here is an example of using these features for writing a scanner
|
|
which expands include files (the
|
|
.B <<EOF>>
|
|
feature is discussed below):
|
|
.nf
|
|
|
|
/* the "incl" state is used for picking up the name
|
|
* of an include file
|
|
*/
|
|
%x incl
|
|
|
|
%{
|
|
#define MAX_INCLUDE_DEPTH 10
|
|
YY_BUFFER_STATE include_stack[MAX_INCLUDE_DEPTH];
|
|
int include_stack_ptr = 0;
|
|
%}
|
|
|
|
%%
|
|
include BEGIN(incl);
|
|
|
|
[a-z]+ ECHO;
|
|
[^a-z\\n]*\\n? ECHO;
|
|
|
|
<incl>[ \\t]* /* eat the whitespace */
|
|
<incl>[^ \\t\\n]+ { /* got the include file name */
|
|
if ( include_stack_ptr >= MAX_INCLUDE_DEPTH )
|
|
{
|
|
fprintf( stderr, "Includes nested too deeply" );
|
|
exit( 1 );
|
|
}
|
|
|
|
include_stack[include_stack_ptr++] =
|
|
YY_CURRENT_BUFFER;
|
|
|
|
yyin = fopen( yytext, "r" );
|
|
|
|
if ( ! yyin )
|
|
error( ... );
|
|
|
|
yy_switch_to_buffer(
|
|
yy_create_buffer( yyin, YY_BUF_SIZE ) );
|
|
|
|
BEGIN(INITIAL);
|
|
}
|
|
|
|
<<EOF>> {
|
|
if ( --include_stack_ptr < 0 )
|
|
{
|
|
yyterminate();
|
|
}
|
|
|
|
else
|
|
yy_switch_to_buffer(
|
|
include_stack[include_stack_ptr] );
|
|
}
|
|
|
|
.fi
|
|
.SH END-OF-FILE RULES
|
|
The special rule "<<EOF>>" indicates
|
|
actions which are to be taken when an end-of-file is
|
|
encountered and yywrap() returns non-zero (i.e., indicates
|
|
no further files to process). The action must finish
|
|
by doing one of four things:
|
|
.IP -
|
|
the special
|
|
.B YY_NEW_FILE
|
|
action, if
|
|
.I yyin
|
|
has been pointed at a new file to process;
|
|
.IP -
|
|
a
|
|
.I return
|
|
statement;
|
|
.IP -
|
|
the special
|
|
.B yyterminate()
|
|
action;
|
|
.IP -
|
|
or, switching to a new buffer using
|
|
.B yy_switch_to_buffer()
|
|
as shown in the example above.
|
|
.LP
|
|
<<EOF>> rules may not be used with other
|
|
patterns; they may only be qualified with a list of start
|
|
conditions. If an unqualified <<EOF>> rule is given, it
|
|
applies to
|
|
.I all
|
|
start conditions which do not already have <<EOF>> actions. To
|
|
specify an <<EOF>> rule for only the initial start condition, use
|
|
.nf
|
|
|
|
<INITIAL><<EOF>>
|
|
|
|
.fi
|
|
.LP
|
|
These rules are useful for catching things like unclosed comments.
|
|
An example:
|
|
.nf
|
|
|
|
%x quote
|
|
%%
|
|
|
|
...other rules for dealing with quotes...
|
|
|
|
<quote><<EOF>> {
|
|
error( "unterminated quote" );
|
|
yyterminate();
|
|
}
|
|
<<EOF>> {
|
|
if ( *++filelist )
|
|
{
|
|
yyin = fopen( *filelist, "r" );
|
|
YY_NEW_FILE;
|
|
}
|
|
else
|
|
yyterminate();
|
|
}
|
|
|
|
.fi
|
|
.SH MISCELLANEOUS MACROS
|
|
The macro
|
|
.bd
|
|
YY_USER_ACTION
|
|
can be redefined to provide an action
|
|
which is always executed prior to the matched rule's action. For example,
|
|
it could be #define'd to call a routine to convert yytext to lower-case.
|
|
.LP
|
|
The macro
|
|
.B YY_USER_INIT
|
|
may be redefined to provide an action which is always executed before
|
|
the first scan (and before the scanner's internal initializations are done).
|
|
For example, it could be used to call a routine to read
|
|
in a data table or open a logging file.
|
|
.LP
|
|
In the generated scanner, the actions are all gathered in one large
|
|
switch statement and separated using
|
|
.B YY_BREAK,
|
|
which may be redefined. By default, it is simply a "break", to separate
|
|
each rule's action from the following rule's.
|
|
Redefining
|
|
.B YY_BREAK
|
|
allows, for example, C++ users to
|
|
#define YY_BREAK to do nothing (while being very careful that every
|
|
rule ends with a "break" or a "return"!) to avoid suffering from
|
|
unreachable statement warnings where because a rule's action ends with
|
|
"return", the
|
|
.B YY_BREAK
|
|
is inaccessible.
|
|
.SH INTERFACING WITH YACC
|
|
One of the main uses of
|
|
.I flex
|
|
is as a companion to the
|
|
.I yacc
|
|
parser-generator.
|
|
.I yacc
|
|
parsers expect to call a routine named
|
|
.B yylex()
|
|
to find the next input token. The routine is supposed to
|
|
return the type of the next token as well as putting any associated
|
|
value in the global
|
|
.B yylval.
|
|
To use
|
|
.I flex
|
|
with
|
|
.I yacc,
|
|
one specifies the
|
|
.B -d
|
|
option to
|
|
.I yacc
|
|
to instruct it to generate the file
|
|
.B y.tab.h
|
|
containing definitions of all the
|
|
.B %tokens
|
|
appearing in the
|
|
.I yacc
|
|
input. This file is then included in the
|
|
.I flex
|
|
scanner. For example, if one of the tokens is "TOK_NUMBER",
|
|
part of the scanner might look like:
|
|
.nf
|
|
|
|
%{
|
|
#include "y.tab.h"
|
|
%}
|
|
|
|
%%
|
|
|
|
[0-9]+ yylval = atoi( yytext ); return TOK_NUMBER;
|
|
|
|
.fi
|
|
.SH TRANSLATION TABLE
|
|
In the name of POSIX compliance,
|
|
.I flex
|
|
supports a
|
|
.I translation table
|
|
for mapping input characters into groups.
|
|
The table is specified in the first section, and its format looks like:
|
|
.nf
|
|
|
|
%t
|
|
1 abcd
|
|
2 ABCDEFGHIJKLMNOPQRSTUVWXYZ
|
|
52 0123456789
|
|
6 \\t\\ \\n
|
|
%t
|
|
|
|
.fi
|
|
This example specifies that the characters 'a', 'b', 'c', and 'd'
|
|
are to all be lumped into group #1, upper-case letters
|
|
in group #2, digits in group #52, tabs, blanks, and newlines into
|
|
group #6, and
|
|
.I
|
|
no other characters will appear in the patterns.
|
|
The group numbers are actually disregarded by
|
|
.I flex;
|
|
.B %t
|
|
serves, though, to lump characters together. Given the above
|
|
table, for example, the pattern "a(AA)*5" is equivalent to "d(ZQ)*0".
|
|
They both say, "match any character in group #1, followed by
|
|
zero-or-more pairs of characters
|
|
from group #2, followed by a character from group #52." Thus
|
|
.B %t
|
|
provides a crude way for introducing equivalence classes into
|
|
the scanner specification.
|
|
.LP
|
|
Note that the
|
|
.B -i
|
|
option (see below) coupled with the equivalence classes which
|
|
.I flex
|
|
automatically generates take care of virtually all the instances
|
|
when one might consider using
|
|
.B %t.
|
|
But what the hell, it's there if you want it.
|
|
.SH OPTIONS
|
|
.I flex
|
|
has the following options:
|
|
.TP
|
|
.B -b
|
|
Generate backtracking information to
|
|
.I lex.backtrack.
|
|
This is a list of scanner states which require backtracking
|
|
and the input characters on which they do so. By adding rules one
|
|
can remove backtracking states. If all backtracking states
|
|
are eliminated and
|
|
.B -f
|
|
or
|
|
.B -F
|
|
is used, the generated scanner will run faster (see the
|
|
.B -p
|
|
flag). Only users who wish to squeeze every last cycle out of their
|
|
scanners need worry about this option. (See the section on PERFORMANCE
|
|
CONSIDERATIONS below.)
|
|
.TP
|
|
.B -c
|
|
is a do-nothing, deprecated option included for POSIX compliance.
|
|
.IP
|
|
.B NOTE:
|
|
in previous releases of
|
|
.I flex
|
|
.B -c
|
|
specified table-compression options. This functionality is
|
|
now given by the
|
|
.B -C
|
|
flag. To ease the the impact of this change, when
|
|
.I flex
|
|
encounters
|
|
.B -c,
|
|
it currently issues a warning message and assumes that
|
|
.B -C
|
|
was desired instead. In the future this "promotion" of
|
|
.B -c
|
|
to
|
|
.B -C
|
|
will go away in the name of full POSIX compliance (unless
|
|
the POSIX meaning is removed first).
|
|
.TP
|
|
.B -d
|
|
makes the generated scanner run in
|
|
.I debug
|
|
mode. Whenever a pattern is recognized and the global
|
|
.B yy_flex_debug
|
|
is non-zero (which is the default),
|
|
the scanner will write to
|
|
.I stderr
|
|
a line of the form:
|
|
.nf
|
|
|
|
--accepting rule at line 53 ("the matched text")
|
|
|
|
.fi
|
|
The line number refers to the location of the rule in the file
|
|
defining the scanner (i.e., the file that was fed to flex). Messages
|
|
are also generated when the scanner backtracks, accepts the
|
|
default rule, reaches the end of its input buffer (or encounters
|
|
a NUL; at this point, the two look the same as far as the scanner's concerned),
|
|
or reaches an end-of-file.
|
|
.TP
|
|
.B -f
|
|
specifies (take your pick)
|
|
.I full table
|
|
or
|
|
.I fast scanner.
|
|
No table compression is done. The result is large but fast.
|
|
This option is equivalent to
|
|
.B -Cf
|
|
(see below).
|
|
.TP
|
|
.B -i
|
|
instructs
|
|
.I flex
|
|
to generate a
|
|
.I case-insensitive
|
|
scanner. The case of letters given in the
|
|
.I flex
|
|
input patterns will
|
|
be ignored, and tokens in the input will be matched regardless of case. The
|
|
matched text given in
|
|
.I yytext
|
|
will have the preserved case (i.e., it will not be folded).
|
|
.TP
|
|
.B -n
|
|
is another do-nothing, deprecated option included only for
|
|
POSIX compliance.
|
|
.TP
|
|
.B -p
|
|
generates a performance report to stderr. The report
|
|
consists of comments regarding features of the
|
|
.I flex
|
|
input file which will cause a loss of performance in the resulting scanner.
|
|
Note that the use of
|
|
.I REJECT
|
|
and variable trailing context (see the BUGS section in flex(1))
|
|
entails a substantial performance penalty; use of
|
|
.I yymore(),
|
|
the
|
|
.B ^
|
|
operator,
|
|
and the
|
|
.B -I
|
|
flag entail minor performance penalties.
|
|
.TP
|
|
.B -s
|
|
causes the
|
|
.I default rule
|
|
(that unmatched scanner input is echoed to
|
|
.I stdout)
|
|
to be suppressed. If the scanner encounters input that does not
|
|
match any of its rules, it aborts with an error. This option is
|
|
useful for finding holes in a scanner's rule set.
|
|
.TP
|
|
.B -t
|
|
instructs
|
|
.I flex
|
|
to write the scanner it generates to standard output instead
|
|
of
|
|
.B lex.yy.c.
|
|
.TP
|
|
.B -v
|
|
specifies that
|
|
.I flex
|
|
should write to
|
|
.I stderr
|
|
a summary of statistics regarding the scanner it generates.
|
|
Most of the statistics are meaningless to the casual
|
|
.I flex
|
|
user, but the
|
|
first line identifies the version of
|
|
.I flex,
|
|
which is useful for figuring
|
|
out where you stand with respect to patches and new releases,
|
|
and the next two lines give the date when the scanner was created
|
|
and a summary of the flags which were in effect.
|
|
.TP
|
|
.B -F
|
|
specifies that the
|
|
.ul
|
|
fast
|
|
scanner table representation should be used. This representation is
|
|
about as fast as the full table representation
|
|
.ul
|
|
(-f),
|
|
and for some sets of patterns will be considerably smaller (and for
|
|
others, larger). In general, if the pattern set contains both "keywords"
|
|
and a catch-all, "identifier" rule, such as in the set:
|
|
.nf
|
|
|
|
"case" return TOK_CASE;
|
|
"switch" return TOK_SWITCH;
|
|
...
|
|
"default" return TOK_DEFAULT;
|
|
[a-z]+ return TOK_ID;
|
|
|
|
.fi
|
|
then you're better off using the full table representation. If only
|
|
the "identifier" rule is present and you then use a hash table or some such
|
|
to detect the keywords, you're better off using
|
|
.ul
|
|
-F.
|
|
.IP
|
|
This option is equivalent to
|
|
.B -CF
|
|
(see below).
|
|
.TP
|
|
.B -I
|
|
instructs
|
|
.I flex
|
|
to generate an
|
|
.I interactive
|
|
scanner. Normally, scanners generated by
|
|
.I flex
|
|
always look ahead one
|
|
character before deciding that a rule has been matched. At the cost of
|
|
some scanning overhead,
|
|
.I flex
|
|
will generate a scanner which only looks ahead
|
|
when needed. Such scanners are called
|
|
.I interactive
|
|
because if you want to write a scanner for an interactive system such as a
|
|
command shell, you will probably want the user's input to be terminated
|
|
with a newline, and without
|
|
.B -I
|
|
the user will have to type a character in addition to the newline in order
|
|
to have the newline recognized. This leads to dreadful interactive
|
|
performance.
|
|
.IP
|
|
If all this seems to confusing, here's the general rule: if a human will
|
|
be typing in input to your scanner, use
|
|
.B -I,
|
|
otherwise don't; if you don't care about squeezing the utmost performance
|
|
from your scanner and you
|
|
don't want to make any assumptions about the input to your scanner,
|
|
use
|
|
.B -I.
|
|
.IP
|
|
Note,
|
|
.B -I
|
|
cannot be used in conjunction with
|
|
.I full
|
|
or
|
|
.I fast tables,
|
|
i.e., the
|
|
.B -f, -F, -Cf,
|
|
or
|
|
.B -CF
|
|
flags.
|
|
.TP
|
|
.B -L
|
|
instructs
|
|
.I flex
|
|
not to generate
|
|
.B #line
|
|
directives. Without this option,
|
|
.I flex
|
|
peppers the generated scanner
|
|
with #line directives so error messages in the actions will be correctly
|
|
located with respect to the original
|
|
.I flex
|
|
input file, and not to
|
|
the fairly meaningless line numbers of
|
|
.B lex.yy.c.
|
|
(Unfortunately
|
|
.I flex
|
|
does not presently generate the necessary directives
|
|
to "retarget" the line numbers for those parts of
|
|
.B lex.yy.c
|
|
which it generated. So if there is an error in the generated code,
|
|
a meaningless line number is reported.)
|
|
.TP
|
|
.B -T
|
|
makes
|
|
.I flex
|
|
run in
|
|
.I trace
|
|
mode. It will generate a lot of messages to
|
|
.I stdout
|
|
concerning
|
|
the form of the input and the resultant non-deterministic and deterministic
|
|
finite automata. This option is mostly for use in maintaining
|
|
.I flex.
|
|
.TP
|
|
.B -8
|
|
instructs
|
|
.I flex
|
|
to generate an 8-bit scanner, i.e., one which can recognize 8-bit
|
|
characters. On some sites,
|
|
.I flex
|
|
is installed with this option as the default. On others, the default
|
|
is 7-bit characters. To see which is the case, check the verbose
|
|
.B (-v)
|
|
output for "equivalence classes created". If the denominator of
|
|
the number shown is 128, then by default
|
|
.I flex
|
|
is generating 7-bit characters. If it is 256, then the default is
|
|
8-bit characters and the
|
|
.B -8
|
|
flag is not required (but may be a good idea to keep the scanner
|
|
specification portable). Feeding a 7-bit scanner 8-bit characters
|
|
will result in infinite loops, bus errors, or other such fireworks,
|
|
so when in doubt, use the flag. Note that if equivalence classes
|
|
are used, 8-bit scanners take only slightly more table space than
|
|
7-bit scanners (128 bytes, to be exact); if equivalence classes are
|
|
not used, however, then the tables may grow up to twice their
|
|
7-bit size.
|
|
.TP
|
|
.B -C[efmF]
|
|
controls the degree of table compression.
|
|
.IP
|
|
.B -Ce
|
|
directs
|
|
.I flex
|
|
to construct
|
|
.I equivalence classes,
|
|
i.e., sets of characters
|
|
which have identical lexical properties (for example, if the only
|
|
appearance of digits in the
|
|
.I flex
|
|
input is in the character class
|
|
"[0-9]" then the digits '0', '1', ..., '9' will all be put
|
|
in the same equivalence class). Equivalence classes usually give
|
|
dramatic reductions in the final table/object file sizes (typically
|
|
a factor of 2-5) and are pretty cheap performance-wise (one array
|
|
look-up per character scanned).
|
|
.IP
|
|
.B -Cf
|
|
specifies that the
|
|
.I full
|
|
scanner tables should be generated -
|
|
.I flex
|
|
should not compress the
|
|
tables by taking advantages of similar transition functions for
|
|
different states.
|
|
.IP
|
|
.B -CF
|
|
specifies that the alternate fast scanner representation (described
|
|
above under the
|
|
.B -F
|
|
flag)
|
|
should be used.
|
|
.IP
|
|
.B -Cm
|
|
directs
|
|
.I flex
|
|
to construct
|
|
.I meta-equivalence classes,
|
|
which are sets of equivalence classes (or characters, if equivalence
|
|
classes are not being used) that are commonly used together. Meta-equivalence
|
|
classes are often a big win when using compressed tables, but they
|
|
have a moderate performance impact (one or two "if" tests and one
|
|
array look-up per character scanned).
|
|
.IP
|
|
A lone
|
|
.B -C
|
|
specifies that the scanner tables should be compressed but neither
|
|
equivalence classes nor meta-equivalence classes should be used.
|
|
.IP
|
|
The options
|
|
.B -Cf
|
|
or
|
|
.B -CF
|
|
and
|
|
.B -Cm
|
|
do not make sense together - there is no opportunity for meta-equivalence
|
|
classes if the table is not being compressed. Otherwise the options
|
|
may be freely mixed.
|
|
.IP
|
|
The default setting is
|
|
.B -Cem,
|
|
which specifies that
|
|
.I flex
|
|
should generate equivalence classes
|
|
and meta-equivalence classes. This setting provides the highest
|
|
degree of table compression. You can trade off
|
|
faster-executing scanners at the cost of larger tables with
|
|
the following generally being true:
|
|
.nf
|
|
|
|
slowest & smallest
|
|
-Cem
|
|
-Cm
|
|
-Ce
|
|
-C
|
|
-C{f,F}e
|
|
-C{f,F}
|
|
fastest & largest
|
|
|
|
.fi
|
|
Note that scanners with the smallest tables are usually generated and
|
|
compiled the quickest, so
|
|
during development you will usually want to use the default, maximal
|
|
compression.
|
|
.IP
|
|
.B -Cfe
|
|
is often a good compromise between speed and size for production
|
|
scanners.
|
|
.IP
|
|
.B -C
|
|
options are not cumulative; whenever the flag is encountered, the
|
|
previous -C settings are forgotten.
|
|
.TP
|
|
.B -Sskeleton_file
|
|
overrides the default skeleton file from which
|
|
.I flex
|
|
constructs its scanners. You'll never need this option unless you are doing
|
|
.I flex
|
|
maintenance or development.
|
|
.SH PERFORMANCE CONSIDERATIONS
|
|
The main design goal of
|
|
.I flex
|
|
is that it generate high-performance scanners. It has been optimized
|
|
for dealing well with large sets of rules. Aside from the effects
|
|
of table compression on scanner speed outlined above,
|
|
there are a number of options/actions which degrade performance. These
|
|
are, from most expensive to least:
|
|
.nf
|
|
|
|
REJECT
|
|
|
|
pattern sets that require backtracking
|
|
arbitrary trailing context
|
|
|
|
'^' beginning-of-line operator
|
|
yymore()
|
|
|
|
.fi
|
|
with the first three all being quite expensive and the last two
|
|
being quite cheap.
|
|
.LP
|
|
.B REJECT
|
|
should be avoided at all costs when performance is important.
|
|
It is a particularly expensive option.
|
|
.LP
|
|
Getting rid of backtracking is messy and often may be an enormous
|
|
amount of work for a complicated scanner. In principal, one begins
|
|
by using the
|
|
.B -b
|
|
flag to generate a
|
|
.I lex.backtrack
|
|
file. For example, on the input
|
|
.nf
|
|
|
|
%%
|
|
foo return TOK_KEYWORD;
|
|
foobar return TOK_KEYWORD;
|
|
|
|
.fi
|
|
the file looks like:
|
|
.nf
|
|
|
|
State #6 is non-accepting -
|
|
associated rule line numbers:
|
|
2 3
|
|
out-transitions: [ o ]
|
|
jam-transitions: EOF [ \\001-n p-\\177 ]
|
|
|
|
State #8 is non-accepting -
|
|
associated rule line numbers:
|
|
3
|
|
out-transitions: [ a ]
|
|
jam-transitions: EOF [ \\001-` b-\\177 ]
|
|
|
|
State #9 is non-accepting -
|
|
associated rule line numbers:
|
|
3
|
|
out-transitions: [ r ]
|
|
jam-transitions: EOF [ \\001-q s-\\177 ]
|
|
|
|
Compressed tables always backtrack.
|
|
|
|
.fi
|
|
The first few lines tell us that there's a scanner state in
|
|
which it can make a transition on an 'o' but not on any other
|
|
character, and that in that state the currently scanned text does not match
|
|
any rule. The state occurs when trying to match the rules found
|
|
at lines 2 and 3 in the input file.
|
|
If the scanner is in that state and then reads
|
|
something other than an 'o', it will have to backtrack to find
|
|
a rule which is matched. With
|
|
a bit of headscratching one can see that this must be the
|
|
state it's in when it has seen "fo". When this has happened,
|
|
if anything other than another 'o' is seen, the scanner will
|
|
have to back up to simply match the 'f' (by the default rule).
|
|
.LP
|
|
The comment regarding State #8 indicates there's a problem
|
|
when "foob" has been scanned. Indeed, on any character other
|
|
than a 'b', the scanner will have to back up to accept "foo".
|
|
Similarly, the comment for State #9 concerns when "fooba" has
|
|
been scanned.
|
|
.LP
|
|
The final comment reminds us that there's no point going to
|
|
all the trouble of removing backtracking from the rules unless
|
|
we're using
|
|
.B -f
|
|
or
|
|
.B -F,
|
|
since there's no performance gain doing so with compressed scanners.
|
|
.LP
|
|
The way to remove the backtracking is to add "error" rules:
|
|
.nf
|
|
|
|
%%
|
|
foo return TOK_KEYWORD;
|
|
foobar return TOK_KEYWORD;
|
|
|
|
fooba |
|
|
foob |
|
|
fo {
|
|
/* false alarm, not really a keyword */
|
|
return TOK_ID;
|
|
}
|
|
|
|
.fi
|
|
.LP
|
|
Eliminating backtracking among a list of keywords can also be
|
|
done using a "catch-all" rule:
|
|
.nf
|
|
|
|
%%
|
|
foo return TOK_KEYWORD;
|
|
foobar return TOK_KEYWORD;
|
|
|
|
[a-z]+ return TOK_ID;
|
|
|
|
.fi
|
|
This is usually the best solution when appropriate.
|
|
.LP
|
|
Backtracking messages tend to cascade.
|
|
With a complicated set of rules it's not uncommon to get hundreds
|
|
of messages. If one can decipher them, though, it often
|
|
only takes a dozen or so rules to eliminate the backtracking (though
|
|
it's easy to make a mistake and have an error rule accidentally match
|
|
a valid token. A possible future
|
|
.I flex
|
|
feature will be to automatically add rules to eliminate backtracking).
|
|
.LP
|
|
.I Variable
|
|
trailing context (where both the leading and trailing parts do not have
|
|
a fixed length) entails almost the same performance loss as
|
|
.I REJECT
|
|
(i.e., substantial). So when possible a rule like:
|
|
.nf
|
|
|
|
%%
|
|
mouse|rat/(cat|dog) run();
|
|
|
|
.fi
|
|
is better written:
|
|
.nf
|
|
|
|
%%
|
|
mouse/cat|dog run();
|
|
rat/cat|dog run();
|
|
|
|
.fi
|
|
or as
|
|
.nf
|
|
|
|
%%
|
|
mouse|rat/cat run();
|
|
mouse|rat/dog run();
|
|
|
|
.fi
|
|
Note that here the special '|' action does
|
|
.I not
|
|
provide any savings, and can even make things worse (see
|
|
.B BUGS
|
|
in flex(1)).
|
|
.LP
|
|
Another area where the user can increase a scanner's performance
|
|
(and one that's easier to implement) arises from the fact that
|
|
the longer the tokens matched, the faster the scanner will run.
|
|
This is because with long tokens the processing of most input
|
|
characters takes place in the (short) inner scanning loop, and
|
|
does not often have to go through the additional work of setting up
|
|
the scanning environment (e.g.,
|
|
.B yytext)
|
|
for the action. Recall the scanner for C comments:
|
|
.nf
|
|
|
|
%x comment
|
|
%%
|
|
int line_num = 1;
|
|
|
|
"/*" BEGIN(comment);
|
|
|
|
<comment>[^*\\n]*
|
|
<comment>"*"+[^*/\\n]*
|
|
<comment>\\n ++line_num;
|
|
<comment>"*"+"/" BEGIN(INITIAL);
|
|
|
|
.fi
|
|
This could be sped up by writing it as:
|
|
.nf
|
|
|
|
%x comment
|
|
%%
|
|
int line_num = 1;
|
|
|
|
"/*" BEGIN(comment);
|
|
|
|
<comment>[^*\\n]*
|
|
<comment>[^*\\n]*\\n ++line_num;
|
|
<comment>"*"+[^*/\\n]*
|
|
<comment>"*"+[^*/\\n]*\\n ++line_num;
|
|
<comment>"*"+"/" BEGIN(INITIAL);
|
|
|
|
.fi
|
|
Now instead of each newline requiring the processing of another
|
|
action, recognizing the newlines is "distributed" over the other rules
|
|
to keep the matched text as long as possible. Note that
|
|
.I adding
|
|
rules does
|
|
.I not
|
|
slow down the scanner! The speed of the scanner is independent
|
|
of the number of rules or (modulo the considerations given at the
|
|
beginning of this section) how complicated the rules are with
|
|
regard to operators such as '*' and '|'.
|
|
.LP
|
|
A final example in speeding up a scanner: suppose you want to scan
|
|
through a file containing identifiers and keywords, one per line
|
|
and with no other extraneous characters, and recognize all the
|
|
keywords. A natural first approach is:
|
|
.nf
|
|
|
|
%%
|
|
asm |
|
|
auto |
|
|
break |
|
|
... etc ...
|
|
volatile |
|
|
while /* it's a keyword */
|
|
|
|
.|\\n /* it's not a keyword */
|
|
|
|
.fi
|
|
To eliminate the back-tracking, introduce a catch-all rule:
|
|
.nf
|
|
|
|
%%
|
|
asm |
|
|
auto |
|
|
break |
|
|
... etc ...
|
|
volatile |
|
|
while /* it's a keyword */
|
|
|
|
[a-z]+ |
|
|
.|\\n /* it's not a keyword */
|
|
|
|
.fi
|
|
Now, if it's guaranteed that there's exactly one word per line,
|
|
then we can reduce the total number of matches by a half by
|
|
merging in the recognition of newlines with that of the other
|
|
tokens:
|
|
.nf
|
|
|
|
%%
|
|
asm\\n |
|
|
auto\\n |
|
|
break\\n |
|
|
... etc ...
|
|
volatile\\n |
|
|
while\\n /* it's a keyword */
|
|
|
|
[a-z]+\\n |
|
|
.|\\n /* it's not a keyword */
|
|
|
|
.fi
|
|
One has to be careful here, as we have now reintroduced backtracking
|
|
into the scanner. In particular, while
|
|
.I we
|
|
know that there will never be any characters in the input stream
|
|
other than letters or newlines,
|
|
.I flex
|
|
can't figure this out, and it will plan for possibly needing backtracking
|
|
when it has scanned a token like "auto" and then the next character
|
|
is something other than a newline or a letter. Previously it would
|
|
then just match the "auto" rule and be done, but now it has no "auto"
|
|
rule, only a "auto\\n" rule. To eliminate the possibility of backtracking,
|
|
we could either duplicate all rules but without final newlines, or,
|
|
since we never expect to encounter such an input and therefore don't
|
|
how it's classified, we can introduce one more catch-all rule, this
|
|
one which doesn't include a newline:
|
|
.nf
|
|
|
|
%%
|
|
asm\\n |
|
|
auto\\n |
|
|
break\\n |
|
|
... etc ...
|
|
volatile\\n |
|
|
while\\n /* it's a keyword */
|
|
|
|
[a-z]+\\n |
|
|
[a-z]+ |
|
|
.|\\n /* it's not a keyword */
|
|
|
|
.fi
|
|
Compiled with
|
|
.B -Cf,
|
|
this is about as fast as one can get a
|
|
.I flex
|
|
scanner to go for this particular problem.
|
|
.LP
|
|
A final note:
|
|
.I flex
|
|
is slow when matching NUL's, particularly when a token contains
|
|
multiple NUL's.
|
|
It's best to write rules which match
|
|
.I short
|
|
amounts of text if it's anticipated that the text will often include NUL's.
|
|
.SH INCOMPATIBILITIES WITH LEX AND POSIX
|
|
.I flex
|
|
is a rewrite of the Unix
|
|
.I lex
|
|
tool (the two implementations do not share any code, though),
|
|
with some extensions and incompatibilities, both of which
|
|
are of concern to those who wish to write scanners acceptable
|
|
to either implementation. At present, the POSIX
|
|
.I lex
|
|
draft is
|
|
very close to the original
|
|
.I lex
|
|
implementation, so some of these
|
|
incompatibilities are also in conflict with the POSIX draft. But
|
|
the intent is that except as noted below,
|
|
.I flex
|
|
as it presently stands will
|
|
ultimately be POSIX conformant (i.e., that those areas of conflict with
|
|
the POSIX draft will be resolved in
|
|
.I flex's
|
|
favor). Please bear in
|
|
mind that all the comments which follow are with regard to the POSIX
|
|
.I draft
|
|
standard of Summer 1989, and not the final document (or subsequent
|
|
drafts); they are included so
|
|
.I flex
|
|
users can be aware of the standardization issues and those areas where
|
|
.I flex
|
|
may in the near future undergo changes incompatible with
|
|
its current definition.
|
|
.LP
|
|
.I flex
|
|
is fully compatible with
|
|
.I lex
|
|
with the following exceptions:
|
|
.IP -
|
|
The undocumented
|
|
.I lex
|
|
scanner internal variable
|
|
.B yylineno
|
|
is not supported. It is difficult to support this option efficiently,
|
|
since it requires examining every character scanned and reexamining
|
|
the characters when the scanner backs up.
|
|
Things get more complicated when the end of buffer or file is reached or a
|
|
NUL is scanned (since the scan must then be restarted with the proper line
|
|
number count), or the user uses the yyless(), unput(), or REJECT actions,
|
|
or the multiple input buffer functions.
|
|
.IP
|
|
The fix is to add rules which, upon seeing a newline, increment
|
|
yylineno. This is usually an easy process, though it can be a drag if some
|
|
of the patterns can match multiple newlines along with other characters.
|
|
.IP
|
|
yylineno is not part of the POSIX draft.
|
|
.IP -
|
|
The
|
|
.B input()
|
|
routine is not redefinable, though it may be called to read characters
|
|
following whatever has been matched by a rule. If
|
|
.B input()
|
|
encounters an end-of-file the normal
|
|
.B yywrap()
|
|
processing is done. A ``real'' end-of-file is returned by
|
|
.B input()
|
|
as
|
|
.I EOF.
|
|
.IP
|
|
Input is instead controlled by redefining the
|
|
.B YY_INPUT
|
|
macro.
|
|
.IP
|
|
The
|
|
.I flex
|
|
restriction that
|
|
.B input()
|
|
cannot be redefined is in accordance with the POSIX draft, but
|
|
.B YY_INPUT
|
|
has not yet been accepted into the draft (and probably won't; it looks
|
|
like the draft will simply not specify any way of controlling the
|
|
scanner's input other than by making an initial assignment to
|
|
.I yyin).
|
|
.IP -
|
|
.I flex
|
|
scanners do not use stdio for input. Because of this, when writing an
|
|
interactive scanner one must explicitly call fflush() on the
|
|
stream associated with the terminal after writing out a prompt.
|
|
With
|
|
.I lex
|
|
such writes are automatically flushed since
|
|
.I lex
|
|
scanners use
|
|
.B getchar()
|
|
for their input. Also, when writing interactive scanners with
|
|
.I flex,
|
|
the
|
|
.B -I
|
|
flag must be used.
|
|
.IP -
|
|
.I flex
|
|
scanners are not as reentrant as
|
|
.I lex
|
|
scanners. In particular, if you have an interactive scanner and
|
|
an interrupt handler which long-jumps out of the scanner, and
|
|
the scanner is subsequently called again, you may get the following
|
|
message:
|
|
.nf
|
|
|
|
fatal flex scanner internal error--end of buffer missed
|
|
|
|
.fi
|
|
To reenter the scanner, first use
|
|
.nf
|
|
|
|
yyrestart( yyin );
|
|
|
|
.fi
|
|
.IP -
|
|
.B output()
|
|
is not supported.
|
|
Output from the
|
|
.B ECHO
|
|
macro is done to the file-pointer
|
|
.I yyout
|
|
(default
|
|
.I stdout).
|
|
.IP
|
|
The POSIX draft mentions that an
|
|
.B output()
|
|
routine exists but currently gives no details as to what it does.
|
|
.IP -
|
|
.I lex
|
|
does not support exclusive start conditions (%x), though they
|
|
are in the current POSIX draft.
|
|
.IP -
|
|
When definitions are expanded,
|
|
.I flex
|
|
encloses them in parentheses.
|
|
With lex, the following:
|
|
.nf
|
|
|
|
NAME [A-Z][A-Z0-9]*
|
|
%%
|
|
foo{NAME}? printf( "Found it\\n" );
|
|
%%
|
|
|
|
.fi
|
|
will not match the string "foo" because when the macro
|
|
is expanded the rule is equivalent to "foo[A-Z][A-Z0-9]*?"
|
|
and the precedence is such that the '?' is associated with
|
|
"[A-Z0-9]*". With
|
|
.I flex,
|
|
the rule will be expanded to
|
|
"foo([A-Z][A-Z0-9]*)?" and so the string "foo" will match.
|
|
Note that because of this, the
|
|
.B ^, $, <s>, /,
|
|
and
|
|
.B <<EOF>>
|
|
operators cannot be used in a
|
|
.I flex
|
|
definition.
|
|
.IP
|
|
The POSIX draft interpretation is the same as
|
|
.I flex's.
|
|
.IP -
|
|
To specify a character class which matches anything but a left bracket (']'),
|
|
in
|
|
.I lex
|
|
one can use "[^]]" but with
|
|
.I flex
|
|
one must use "[^\\]]". The latter works with
|
|
.I lex,
|
|
too.
|
|
.IP -
|
|
The
|
|
.I lex
|
|
.B %r
|
|
(generate a Ratfor scanner) option is not supported. It is not part
|
|
of the POSIX draft.
|
|
.IP -
|
|
If you are providing your own yywrap() routine, you must include a
|
|
"#undef yywrap" in the definitions section (section 1). Note that
|
|
the "#undef" will have to be enclosed in %{}'s.
|
|
.IP
|
|
The POSIX draft
|
|
specifies that yywrap() is a function and this is very unlikely to change; so
|
|
.I flex users are warned
|
|
that
|
|
.B yywrap()
|
|
is likely to be changed to a function in the near future.
|
|
.IP -
|
|
After a call to
|
|
.B unput(),
|
|
.I yytext
|
|
and
|
|
.I yyleng
|
|
are undefined until the next token is matched. This is not the case with
|
|
.I lex
|
|
or the present POSIX draft.
|
|
.IP -
|
|
The precedence of the
|
|
.B {}
|
|
(numeric range) operator is different.
|
|
.I lex
|
|
interprets "abc{1,3}" as "match one, two, or
|
|
three occurrences of 'abc'", whereas
|
|
.I flex
|
|
interprets it as "match 'ab'
|
|
followed by one, two, or three occurrences of 'c'". The latter is
|
|
in agreement with the current POSIX draft.
|
|
.IP -
|
|
The precedence of the
|
|
.B ^
|
|
operator is different.
|
|
.I lex
|
|
interprets "^foo|bar" as "match either 'foo' at the beginning of a line,
|
|
or 'bar' anywhere", whereas
|
|
.I flex
|
|
interprets it as "match either 'foo' or 'bar' if they come at the beginning
|
|
of a line". The latter is in agreement with the current POSIX draft.
|
|
.IP -
|
|
To refer to yytext outside of the scanner source file,
|
|
the correct definition with
|
|
.I flex
|
|
is "extern char *yytext" rather than "extern char yytext[]".
|
|
This is contrary to the current POSIX draft but a point on which
|
|
.I flex
|
|
will not be changing, as the array representation entails a
|
|
serious performance penalty. It is hoped that the POSIX draft will
|
|
be emended to support the
|
|
.I flex
|
|
variety of declaration (as this is a fairly painless change to
|
|
require of
|
|
.I lex
|
|
users).
|
|
.IP -
|
|
.I yyin
|
|
is
|
|
.I initialized
|
|
by
|
|
.I lex
|
|
to be
|
|
.I stdin;
|
|
.I flex,
|
|
on the other hand,
|
|
initializes
|
|
.I yyin
|
|
to NULL
|
|
and then
|
|
.I assigns
|
|
it to
|
|
.I stdin
|
|
the first time the scanner is called, providing
|
|
.I yyin
|
|
has not already been assigned to a non-NULL value. The difference is
|
|
subtle, but the net effect is that with
|
|
.I flex
|
|
scanners,
|
|
.I yyin
|
|
does not have a valid value until the scanner has been called.
|
|
.IP -
|
|
The special table-size declarations such as
|
|
.B %a
|
|
supported by
|
|
.I lex
|
|
are not required by
|
|
.I flex
|
|
scanners;
|
|
.I flex
|
|
ignores them.
|
|
.IP -
|
|
The name
|
|
.bd
|
|
FLEX_SCANNER
|
|
is #define'd so scanners may be written for use with either
|
|
.I flex
|
|
or
|
|
.I lex.
|
|
.LP
|
|
The following
|
|
.I flex
|
|
features are not included in
|
|
.I lex
|
|
or the POSIX draft standard:
|
|
.nf
|
|
|
|
yyterminate()
|
|
<<EOF>>
|
|
YY_DECL
|
|
#line directives
|
|
%{}'s around actions
|
|
yyrestart()
|
|
comments beginning with '#' (deprecated)
|
|
multiple actions on a line
|
|
|
|
.fi
|
|
This last feature refers to the fact that with
|
|
.I flex
|
|
you can put multiple actions on the same line, separated with
|
|
semi-colons, while with
|
|
.I lex,
|
|
the following
|
|
.nf
|
|
|
|
foo handle_foo(); ++num_foos_seen;
|
|
|
|
.fi
|
|
is (rather surprisingly) truncated to
|
|
.nf
|
|
|
|
foo handle_foo();
|
|
|
|
.fi
|
|
.I flex
|
|
does not truncate the action. Actions that are not enclosed in
|
|
braces are simply terminated at the end of the line.
|
|
.SH DIAGNOSTICS
|
|
.I reject_used_but_not_detected undefined
|
|
or
|
|
.I yymore_used_but_not_detected undefined -
|
|
These errors can occur at compile time. They indicate that the
|
|
scanner uses
|
|
.B REJECT
|
|
or
|
|
.B yymore()
|
|
but that
|
|
.I flex
|
|
failed to notice the fact, meaning that
|
|
.I flex
|
|
scanned the first two sections looking for occurrences of these actions
|
|
and failed to find any, but somehow you snuck some in (via a #include
|
|
file, for example). Make an explicit reference to the action in your
|
|
.I flex
|
|
input file. (Note that previously
|
|
.I flex
|
|
supported a
|
|
.B %used/%unused
|
|
mechanism for dealing with this problem; this feature is still supported
|
|
but now deprecated, and will go away soon unless the author hears from
|
|
people who can argue compellingly that they need it.)
|
|
.LP
|
|
.I flex scanner jammed -
|
|
a scanner compiled with
|
|
.B -s
|
|
has encountered an input string which wasn't matched by
|
|
any of its rules.
|
|
.LP
|
|
.I flex input buffer overflowed -
|
|
a scanner rule matched a string long enough to overflow the
|
|
scanner's internal input buffer (16K bytes by default - controlled by
|
|
.B YY_BUF_SIZE
|
|
in "flex.skel". Note that to redefine this macro, you must first
|
|
.B #undefine
|
|
it).
|
|
.LP
|
|
.I scanner requires -8 flag -
|
|
Your scanner specification includes recognizing 8-bit characters and
|
|
you did not specify the -8 flag (and your site has not installed flex
|
|
with -8 as the default).
|
|
.LP
|
|
.I
|
|
fatal flex scanner internal error--end of buffer missed -
|
|
This can occur in an scanner which is reentered after a long-jump
|
|
has jumped out (or over) the scanner's activation frame. Before
|
|
reentering the scanner, use:
|
|
.nf
|
|
|
|
yyrestart( yyin );
|
|
|
|
.fi
|
|
.LP
|
|
.I too many %t classes! -
|
|
You managed to put every single character into its own %t class.
|
|
.I flex
|
|
requires that at least one of the classes share characters.
|
|
.SH DEFICIENCIES / BUGS
|
|
See flex(1).
|
|
.SH "SEE ALSO"
|
|
.LP
|
|
flex(1), lex(1), yacc(1), sed(1), awk(1).
|
|
.LP
|
|
M. E. Lesk and E. Schmidt,
|
|
.I LEX - Lexical Analyzer Generator
|
|
.SH AUTHOR
|
|
Vern Paxson, with the help of many ideas and much inspiration from
|
|
Van Jacobson. Original version by Jef Poskanzer. The fast table
|
|
representation is a partial implementation of a design done by Van
|
|
Jacobson. The implementation was done by Kevin Gong and Vern Paxson.
|
|
.LP
|
|
Thanks to the many
|
|
.I flex
|
|
beta-testers, feedbackers, and contributors, especially Casey
|
|
Leedom, benson@odi.com, Keith Bostic,
|
|
Frederic Brehm, Nick Christopher, Jason Coughlin,
|
|
Scott David Daniels, Leo Eskin,
|
|
Chris Faylor, Eric Goldman, Eric
|
|
Hughes, Jeffrey R. Jones, Kevin B. Kenny, Ronald Lamprecht,
|
|
Greg Lee, Craig Leres, Mohamed el Lozy, Jim Meyering, Marc Nozell, Esmond Pitt,
|
|
Jef Poskanzer, Jim Roskind,
|
|
Dave Tallman, Frank Whaley, Ken Yap, and those whose names
|
|
have slipped my marginal mail-archiving skills but whose contributions
|
|
are appreciated all the same.
|
|
.LP
|
|
Thanks to Keith Bostic, John Gilmore, Craig Leres, Bob
|
|
Mulcahy, Rich Salz, and Richard Stallman for help with various distribution
|
|
headaches.
|
|
.LP
|
|
Thanks to Esmond Pitt and Earle Horton for 8-bit character support;
|
|
to Benson Margulies and Fred
|
|
Burke for C++ support; to Ove Ewerlid for the basics of support for
|
|
NUL's; and to Eric Hughes for the basics of support for multiple buffers.
|
|
.LP
|
|
Work is being done on extending
|
|
.I flex
|
|
to generate scanners in which the
|
|
state machine is directly represented in C code rather than tables.
|
|
These scanners may well be substantially faster than those generated
|
|
using -f or -F. If you are working in this area and are interested
|
|
in comparing notes and seeing whether redundant work can be avoided,
|
|
contact Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
|
|
.LP
|
|
This work was primarily done when I was at the Real Time Systems Group
|
|
at the Lawrence Berkeley Laboratory in Berkeley, CA. Many thanks to all there
|
|
for the support I received.
|
|
.LP
|
|
Send comments to:
|
|
.nf
|
|
|
|
Vern Paxson
|
|
Computer Science Department
|
|
4126 Upson Hall
|
|
Cornell University
|
|
Ithaca, NY 14853-7501
|
|
|
|
vern@cs.cornell.edu
|
|
decvax!cornell!vern
|
|
|
|
.fi
|