893df4b79b
This provides adi, sbi, mli, dvi, rmi, ngi, dvu, rmu 8, but is missing shifts and rotates. It is also missing conversions between 8-byte integers and other sizes of integers or floats. The code might not be all correct, but works at least some of the time. I adapted this from how ncg i86 does 4-byte integers, but I use a different algorithm when dividing by a large value: i86 avoids the div instruction and uses a shift-and-subtract loop; but I use the div instruction to estimate a quotient, which is more like how big integer libraries do division. My .dvi8 and .dvu8 also set ecx:ebx to the remainder; this might be a bad idea, because it requires .dvi8 and .dvu8 to always calculate the remainder, even when the caller only wants the quotient. To play with 8-byte integers, I wrote EM procedures like mes 2, 4, 4 exp $ngi pro $ngi,0 ldl 4 ngi 8 lol 0 sti 8 lol 0 ret 4 end exp $adi pro $adi,0 ldl 4 ldl 12 adi 8 lol 0 sti 8 lol 0 ret 4 end and called them from C like typedef struct { int l; int h; } q; q ngi(q); q adi(q, q);
116 lines
2.6 KiB
ArmAsm
116 lines
2.6 KiB
ArmAsm
.sect .text; .sect .rom; .sect .data; .sect .bss
|
|
.sect .text
|
|
.define .dvi8, .dvu8
|
|
|
|
yl=8
|
|
yh=12
|
|
xl=16
|
|
xh=20
|
|
! .dvi8 and .dvu8 divide x = xh:xl by y = yh:yl,
|
|
! yield edx:eax = quotient, ecx:ebx = remainder.
|
|
|
|
.dvu8:
|
|
! Unsigned division: set di = 0 for non-negative quotient.
|
|
push edi
|
|
xor di,di
|
|
mov eax,xh(esp)
|
|
mov edx,yh(esp)
|
|
and edx,edx
|
|
jmp 7f
|
|
|
|
.dvi8:
|
|
! Signed division: replace x and y with their absolute values.
|
|
! Set di = 1 for negative quotient, 0 for non-negative.
|
|
push edi
|
|
xor di,di ! di = 0
|
|
mov eax,xh(esp)
|
|
and eax,eax
|
|
jns 1f
|
|
inc di ! di = 1
|
|
neg eax
|
|
neg xl(esp)
|
|
sbb eax,0 ! eax:xl = absolute value of x
|
|
1: mov edx,yh(esp)
|
|
and edx,edx
|
|
jns 7f
|
|
xor di,1 ! flip di
|
|
neg edx
|
|
neg yl(esp)
|
|
sbb edx,0 ! edx:yl = absolute value of y
|
|
|
|
7: ! Here .dvu8 joins .dvi8, eax = xh, edx = yh, flags test edx,
|
|
! the values in xh(esp) and yh(esp) are garbage.
|
|
jnz 8f ! jump if y >= 2**32
|
|
|
|
! x / y = x / yl = xh / yl + xl / yl = qh + (xl + rh) / yl
|
|
! where qh and rh are quotient, remainder from xh / yl.
|
|
mov ebx,yl(esp)
|
|
xor edx,edx ! edx:eax = xh
|
|
div ebx ! eax = qh, edx = rh
|
|
mov ecx,eax
|
|
mov eax,xl(esp)
|
|
div ebx ! eax = ql, edx = remainder
|
|
mov ebx,edx
|
|
mov edx,ecx ! edx:eax = quotient qh:ql
|
|
xor ecx,ecx ! ecx:ebx = remainder
|
|
|
|
9: ! Finally, if di != 0 then negate quotient, remainder.
|
|
and di,di
|
|
jz 1f
|
|
neg edx
|
|
neg eax
|
|
sbb edx,0 ! negate quotient edx:eax
|
|
neg ecx
|
|
neg ebx
|
|
sbb ecx,0 ! negate remainder ecx:ebx
|
|
1: pop edi ! caller's edi
|
|
ret 16
|
|
|
|
8: ! We come here if y >= 2**32.
|
|
mov xh(esp),eax
|
|
mov yh(esp),edx
|
|
mov ebx,yl(esp) ! edx:ebx = y
|
|
|
|
! Estimate x / y as q = (x / (y >> cl)) >> cl,
|
|
! where 2**31 <= (y >> cl) < 2**32.
|
|
xor cx,cx
|
|
1: inc cx
|
|
shr edx,1
|
|
rcr ebx,1 ! edx:ebx = y >> cl
|
|
and edx,edx
|
|
jnz 1b ! loop until y >> cl fits in ebx
|
|
|
|
! x / (y >> cl) = qh + (x + rh) / (y >> cl)
|
|
push edi
|
|
xor edx,edx ! edx:eax = xh
|
|
div ebx ! eax = qh, edx = rh
|
|
mov edi,eax
|
|
mov eax,xl+4(esp) ! push edi moved xl to xl+4
|
|
div ebx ! edi:eax = x / (y >> cl)
|
|
|
|
! q = (x / (y >> cl)) >> cl = esi:eax >> cl
|
|
shr eax,cl
|
|
neg cx ! cl = (32 - cl) modulo 32
|
|
shl edi,cl
|
|
or eax,edi ! eax = q
|
|
|
|
! Calculate the remainder x - q * y. If the subtraction
|
|
! overflows, then the correct quotient is q - 1, else it is q.
|
|
mov ecx,yh+4(esp)
|
|
imul ecx,eax ! ecx = q * yh
|
|
mov edi,eax
|
|
mul yl+4(esp) ! edx:eax = q * yl
|
|
add edx,ecx ! edx:eax = q * y
|
|
mov ebx,xl+4(esp)
|
|
mov ecx,xh+4(esp) ! ecx:ebx = x
|
|
sub ebx,eax
|
|
sbb ecx,edx ! ecx:ebx = remainder
|
|
jnc 1f
|
|
dec edi ! fix quotient
|
|
add ebx,yl+4(esp)
|
|
adc ebx,yh+4(esp) ! fix remainder
|
|
1: mov eax,edi
|
|
xor edx,edx ! edx:eax = quotient
|
|
pop edi ! negative flag
|
|
jmp 9b
|