113 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			113 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | 
						|
 * See the copyright notice in the ACK home directory, in the file "Copyright".
 | 
						|
 *
 | 
						|
 * Author: Ceriel J.H. Jacobs
 | 
						|
 */
 | 
						|
 | 
						|
/* $Header$ */
 | 
						|
 | 
						|
#define __NO_DEFS
 | 
						|
#include <math.h>
 | 
						|
 | 
						|
static double
 | 
						|
sinus(x, quadrant)
 | 
						|
	double x;
 | 
						|
{
 | 
						|
	/*	sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] */
 | 
						|
	/*	Hart & Cheney # 3374 */
 | 
						|
 | 
						|
	static double p[6] = {
 | 
						|
		 0.4857791909822798473837058825e+10,
 | 
						|
		-0.1808816670894030772075877725e+10,
 | 
						|
		 0.1724314784722489597789244188e+09,
 | 
						|
		-0.6351331748520454245913645971e+07,
 | 
						|
		 0.1002087631419532326179108883e+06,
 | 
						|
		-0.5830988897678192576148973679e+03
 | 
						|
	};
 | 
						|
 | 
						|
	static double q[6] = {
 | 
						|
		 0.3092566379840468199410228418e+10,
 | 
						|
		 0.1202384907680254190870913060e+09,
 | 
						|
		 0.2321427631602460953669856368e+07,
 | 
						|
		 0.2848331644063908832127222835e+05,
 | 
						|
		 0.2287602116741682420054505174e+03,
 | 
						|
		 0.1000000000000000000000000000e+01
 | 
						|
	};
 | 
						|
 | 
						|
	double xsqr;
 | 
						|
	int t;
 | 
						|
 | 
						|
	if (x < 0) {
 | 
						|
		quadrant += 2;
 | 
						|
		x = -x;
 | 
						|
	}
 | 
						|
	if (M_PI_2 - x == M_PI_2) {
 | 
						|
		switch(quadrant) {
 | 
						|
		case 0:
 | 
						|
		case 2:
 | 
						|
			return 0.0;
 | 
						|
		case 1:
 | 
						|
			return 1.0;
 | 
						|
		case 3:
 | 
						|
			return -1.0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (x >= M_2PI) {
 | 
						|
	    if (x <= 0x7fffffff) {
 | 
						|
		/*	Use extended precision to calculate reduced argument.
 | 
						|
			Split 2pi in 2 parts a1 and a2, of which the first only
 | 
						|
			uses some bits of the mantissa, so that n * a1 is
 | 
						|
			exactly representable, where n is the integer part of
 | 
						|
			x/pi.
 | 
						|
			Here we used 12 bits of the mantissa for a1.
 | 
						|
			Also split x in integer part x1 and fraction part x2.
 | 
						|
			We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
 | 
						|
		*/
 | 
						|
#define A1 6.2822265625
 | 
						|
#define A2 0.00095874467958647692528676655900576
 | 
						|
		double n = (long) (x / M_2PI);
 | 
						|
		double x1 = (long) x;
 | 
						|
		double x2 = x - x1;
 | 
						|
		x = x1 - n * A1;
 | 
						|
		x += x2;
 | 
						|
		x -= n * A2;
 | 
						|
#undef A1
 | 
						|
#undef A2
 | 
						|
	    }
 | 
						|
	    else {
 | 
						|
		extern double _fif();
 | 
						|
		double dummy;
 | 
						|
 | 
						|
		x = _fif(x/M_2PI, 1.0, &dummy) * M_2PI;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	x /= M_PI_2;
 | 
						|
	t = x;
 | 
						|
	x -= t;
 | 
						|
	quadrant = (quadrant + (int)(t % 4)) % 4;
 | 
						|
	if (quadrant & 01) {
 | 
						|
		x = 1 - x;
 | 
						|
	}
 | 
						|
	if (quadrant > 1) {
 | 
						|
		x = -x;
 | 
						|
	}
 | 
						|
	xsqr = x * x;
 | 
						|
	x = x * POLYNOM5(xsqr, p) / POLYNOM5(xsqr, q);
 | 
						|
	return x;
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
_sin(x)
 | 
						|
	double x;
 | 
						|
{
 | 
						|
	return sinus(x, 0);
 | 
						|
}
 | 
						|
 | 
						|
double
 | 
						|
_cos(x)
 | 
						|
	double x;
 | 
						|
{
 | 
						|
	if (x < 0) x = -x;
 | 
						|
	return sinus(x, 1);
 | 
						|
}
 |