bug caused by this instruction: fmove.l fp0,d0 problem was caused by a conflict between the fpu emulator (softfloat) and the compiler. the emulator implemented this as a purely arithmetic move & conversion, but the compiler assumed that the result could be interpreted as a logical (ie unsigned) conversion. rightly or wrongly. for example, if fp0 contained the value 2576980377.0 which is unsigned integer -1717987328 the emulator would treat this as an integer overflow and move 0x7fffffff (INT_MAX) into d0. The complier on the other hand would assume that d0 contained 2576980377 (the unsigned value). I don't know which is correct, but this is my fix for the time being.
		
			
				
	
	
		
			4940 lines
		
	
	
	
		
			155 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4940 lines
		
	
	
	
		
			155 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*============================================================================
 | |
| 
 | |
| This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
 | |
| Package, Release 2b.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
 | |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
 | |
| RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
 | |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
 | |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
 | |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
 | |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
 | |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) the source code for the derivative work includes prominent notice that
 | |
| the work is derivative, and (2) the source code includes prominent notice with
 | |
| these four paragraphs for those parts of this code that are retained.
 | |
| 
 | |
| =============================================================================*/
 | |
| 
 | |
| #include "../m68kcpu.h" // which includes softfloat.h after defining the basic types
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Floating-point rounding mode, extended double-precision rounding precision,
 | |
| | and exception flags.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int8 float_exception_flags = 0;
 | |
| #ifdef FLOATX80
 | |
| int8 floatx80_rounding_precision = 80;
 | |
| #endif
 | |
| 
 | |
| int8 float_rounding_mode = float_round_nearest_even;
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Functions and definitions to determine:  (1) whether tininess for underflow
 | |
| | is detected before or after rounding by default, (2) what (if anything)
 | |
| | happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | |
| | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 | |
| | are propagated from function inputs to output.  These details are target-
 | |
| | specific.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-specialize"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | |
| | and 7, and returns the properly rounded 32-bit integer corresponding to the
 | |
| | input.  If `zSign' is 1, the input is negated before being converted to an
 | |
| | integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
 | |
| | is simply rounded to an integer, with the inexact exception raised if the
 | |
| | input cannot be represented exactly as an integer.  However, if the fixed-
 | |
| | point input is too large, the invalid exception is raised and the largest
 | |
| | positive or negative integer is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int32 roundAndPackInt32( flag zSign, bits64 absZ )
 | |
| {
 | |
| 	int8 roundingMode;
 | |
| 	flag roundNearestEven;
 | |
| 	int8 roundIncrement, roundBits;
 | |
| 	int32 z;
 | |
| 
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
| 	roundIncrement = 0x40;
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			roundIncrement = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			roundIncrement = 0x7F;
 | |
| 			if ( zSign ) {
 | |
| 				if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	roundBits = absZ & 0x7F;
 | |
| 	absZ = ( absZ + roundIncrement )>>7;
 | |
| 	absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
| 	z = absZ;
 | |
| 	if ( zSign ) z = - z;
 | |
| 	if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 | |
| 		float_raise( float_flag_invalid );
 | |
|                 return z /* zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF*/;
 | |
| 	}
 | |
| 	if ( roundBits ) float_exception_flags |= float_flag_inexact;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | |
| | `absZ1', with binary point between bits 63 and 64 (between the input words),
 | |
| | and returns the properly rounded 64-bit integer corresponding to the input.
 | |
| | If `zSign' is 1, the input is negated before being converted to an integer.
 | |
| | Ordinarily, the fixed-point input is simply rounded to an integer, with
 | |
| | the inexact exception raised if the input cannot be represented exactly as
 | |
| | an integer.  However, if the fixed-point input is too large, the invalid
 | |
| | exception is raised and the largest positive or negative integer is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 )
 | |
| {
 | |
| 	int8 roundingMode;
 | |
| 	flag roundNearestEven, increment;
 | |
| 	int64 z;
 | |
| 
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
| 	increment = ( (sbits64) absZ1 < 0 );
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			increment = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			if ( zSign ) {
 | |
| 				increment = ( roundingMode == float_round_down ) && absZ1;
 | |
| 			}
 | |
| 			else {
 | |
| 				increment = ( roundingMode == float_round_up ) && absZ1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if ( increment ) {
 | |
| 		++absZ0;
 | |
| 		if ( absZ0 == 0 ) goto overflow;
 | |
| 		absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
 | |
| 	}
 | |
| 	z = absZ0;
 | |
| 	if ( zSign ) z = - z;
 | |
| 	if ( z && ( ( z < 0 ) ^ zSign ) ) {
 | |
| 	overflow:
 | |
| 		float_raise( float_flag_invalid );
 | |
|                 return z
 | |
|                         /*	zSign ? (sbits64) LIT64( 0x8000000000000000 )
 | |
|                      : (sbits64)( 0x7FFFFFFFFFFFFFFF )*/;
 | |
| 	}
 | |
| 	if ( absZ1 ) float_exception_flags |= float_flag_inexact;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline bits32 extractFloat32Frac( float32 a )
 | |
| {
 | |
| 	return a & 0x007FFFFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int16 extractFloat32Exp( float32 a )
 | |
| {
 | |
| 	return ( a>>23 ) & 0xFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat32Sign( float32 a )
 | |
| {
 | |
| 	return a>>31;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal single-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
| 	normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	shiftCount = countLeadingZeros32( aSig ) - 8;
 | |
| 	*zSigPtr = aSig<<shiftCount;
 | |
| 	*zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | single-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
| 	return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the single-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal single-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 30
 | |
| | and 29, which is 7 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
| 	int8 roundingMode;
 | |
| 	flag roundNearestEven;
 | |
| 	int8 roundIncrement, roundBits;
 | |
| 	flag isTiny;
 | |
| 
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
| 	roundIncrement = 0x40;
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			roundIncrement = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			roundIncrement = 0x7F;
 | |
| 			if ( zSign ) {
 | |
| 				if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	roundBits = zSig & 0x7F;
 | |
| 	if ( 0xFD <= (bits16) zExp ) {
 | |
| 		if (    ( 0xFD < zExp )
 | |
| 				|| (    ( zExp == 0xFD )
 | |
| 					&& ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
 | |
| 			) {
 | |
| 			float_raise( float_flag_overflow | float_flag_inexact );
 | |
| 			return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 );
 | |
| 		}
 | |
| 		if ( zExp < 0 ) {
 | |
| 			isTiny =
 | |
| 					( float_detect_tininess == float_tininess_before_rounding )
 | |
| 				|| ( zExp < -1 )
 | |
| 				|| ( zSig + roundIncrement < 0x80000000 );
 | |
| 			shift32RightJamming( zSig, - zExp, &zSig );
 | |
| 			zExp = 0;
 | |
| 			roundBits = zSig & 0x7F;
 | |
| 			if ( isTiny && roundBits ) float_raise( float_flag_underflow );
 | |
| 		}
 | |
| 	}
 | |
| 	if ( roundBits ) float_exception_flags |= float_flag_inexact;
 | |
| 	zSig = ( zSig + roundIncrement )>>7;
 | |
| 	zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
| 	if ( zSig == 0 ) zExp = 0;
 | |
| 	return packFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
 | |
| | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32
 | |
| 	normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	shiftCount = countLeadingZeros32( zSig ) - 1;
 | |
| 	return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline bits64 extractFloat64Frac( float64 a )
 | |
| {
 | |
| 	return a & LIT64( 0x000FFFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int16 extractFloat64Exp( float64 a )
 | |
| {
 | |
| 	return ( a>>52 ) & 0x7FF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat64Sign( float64 a )
 | |
| {
 | |
| 	return a>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal double-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
| 	normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	shiftCount = countLeadingZeros64( aSig ) - 11;
 | |
| 	*zSigPtr = aSig<<shiftCount;
 | |
| 	*zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | double-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
 | |
| {
 | |
| 	return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the double-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded
 | |
| | to a subnormal number, and the underflow and inexact exceptions are raised
 | |
| | if the abstract input cannot be represented exactly as a subnormal double-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 62
 | |
| | and 61, which is 10 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
 | |
| {
 | |
| 	int8 roundingMode;
 | |
| 	flag roundNearestEven;
 | |
| 	int16 roundIncrement, roundBits;
 | |
| 	flag isTiny;
 | |
| 
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
| 	roundIncrement = 0x200;
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			roundIncrement = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			roundIncrement = 0x3FF;
 | |
| 			if ( zSign ) {
 | |
| 				if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	roundBits = zSig & 0x3FF;
 | |
| 	if ( 0x7FD <= (bits16) zExp ) {
 | |
| 		if (    ( 0x7FD < zExp )
 | |
| 				|| (    ( zExp == 0x7FD )
 | |
| 					&& ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
 | |
| 			) {
 | |
| 			float_raise( float_flag_overflow | float_flag_inexact );
 | |
| 			return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 );
 | |
| 		}
 | |
| 		if ( zExp < 0 ) {
 | |
| 			isTiny =
 | |
| 					( float_detect_tininess == float_tininess_before_rounding )
 | |
| 				|| ( zExp < -1 )
 | |
| 				|| ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 | |
| 			shift64RightJamming( zSig, - zExp, &zSig );
 | |
| 			zExp = 0;
 | |
| 			roundBits = zSig & 0x3FF;
 | |
| 			if ( isTiny && roundBits ) float_raise( float_flag_underflow );
 | |
| 		}
 | |
| 	}
 | |
| 	if ( roundBits ) float_exception_flags |= float_flag_inexact;
 | |
| 	zSig = ( zSig + roundIncrement )>>10;
 | |
| 	zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 | |
| 	if ( zSig == 0 ) zExp = 0;
 | |
| 	return packFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
 | |
| | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64
 | |
| 	normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig )
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	shiftCount = countLeadingZeros64( zSig ) - 1;
 | |
| 	return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal extended double-precision floating-point value
 | |
| | represented by the denormalized significand `aSig'.  The normalized exponent
 | |
| | and significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
| 	normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	shiftCount = countLeadingZeros64( aSig );
 | |
| 	*zSigPtr = aSig<<shiftCount;
 | |
| 	*zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | rounded and packed into the extended double-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal extended
 | |
| | double-precision floating-point number.
 | |
| |     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 | |
| | number of bits as single or double precision, respectively.  Otherwise, the
 | |
| | result is rounded to the full precision of the extended double-precision
 | |
| | format.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  The
 | |
| | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| // roundAndPackFloatx80 is now also used in fyl2x.c
 | |
| 
 | |
| /* static */ floatx80
 | |
| 	roundAndPackFloatx80(
 | |
| 		int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 | |
| 	)
 | |
| {
 | |
| 	int8 roundingMode;
 | |
| 	flag roundNearestEven, increment, isTiny;
 | |
| 	int64 roundIncrement, roundMask, roundBits;
 | |
| 
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
| 	if ( roundingPrecision == 80 ) goto precision80;
 | |
| 	if ( roundingPrecision == 64 ) {
 | |
| 		roundIncrement = LIT64( 0x0000000000000400 );
 | |
| 		roundMask = LIT64( 0x00000000000007FF );
 | |
| 	}
 | |
| 	else if ( roundingPrecision == 32 ) {
 | |
| 		roundIncrement = LIT64( 0x0000008000000000 );
 | |
| 		roundMask = LIT64( 0x000000FFFFFFFFFF );
 | |
| 	}
 | |
| 	else {
 | |
| 		goto precision80;
 | |
| 	}
 | |
| 	zSig0 |= ( zSig1 != 0 );
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			roundIncrement = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			roundIncrement = roundMask;
 | |
| 			if ( zSign ) {
 | |
| 				if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	roundBits = zSig0 & roundMask;
 | |
| 	if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 | |
| 		if (    ( 0x7FFE < zExp )
 | |
| 				|| ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 | |
| 			) {
 | |
| 			goto overflow;
 | |
| 		}
 | |
| 		if ( zExp <= 0 ) {
 | |
| 			isTiny =
 | |
| 					( float_detect_tininess == float_tininess_before_rounding )
 | |
| 				|| ( zExp < 0 )
 | |
| 				|| ( zSig0 <= zSig0 + roundIncrement );
 | |
| 			shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 | |
| 			zExp = 0;
 | |
| 			roundBits = zSig0 & roundMask;
 | |
| 			if ( isTiny && roundBits ) float_raise( float_flag_underflow );
 | |
| 			if ( roundBits ) float_exception_flags |= float_flag_inexact;
 | |
| 			zSig0 += roundIncrement;
 | |
| 			if ( (sbits64) zSig0 < 0 ) zExp = 1;
 | |
| 			roundIncrement = roundMask + 1;
 | |
| 			if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
| 				roundMask |= roundIncrement;
 | |
| 			}
 | |
| 			zSig0 &= ~ roundMask;
 | |
| 			return packFloatx80( zSign, zExp, zSig0 );
 | |
| 		}
 | |
| 	}
 | |
| 	if ( roundBits ) float_exception_flags |= float_flag_inexact;
 | |
| 	zSig0 += roundIncrement;
 | |
| 	if ( zSig0 < roundIncrement ) {
 | |
| 		++zExp;
 | |
|                 zSig0 = (sbits64)( 0x8000000000000000 );
 | |
| 	}
 | |
| 	roundIncrement = roundMask + 1;
 | |
| 	if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
| 		roundMask |= roundIncrement;
 | |
| 	}
 | |
| 	zSig0 &= ~ roundMask;
 | |
| 	if ( zSig0 == 0 ) zExp = 0;
 | |
| 	return packFloatx80( zSign, zExp, zSig0 );
 | |
| 	precision80:
 | |
| 	increment = ( (sbits64) zSig1 < 0 );
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			increment = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			if ( zSign ) {
 | |
| 				increment = ( roundingMode == float_round_down ) && zSig1;
 | |
| 			}
 | |
| 			else {
 | |
| 				increment = ( roundingMode == float_round_up ) && zSig1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 | |
| 		if (    ( 0x7FFE < zExp )
 | |
| 				|| (    ( zExp == 0x7FFE )
 | |
| 					&& ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 | |
| 					&& increment
 | |
| 				)
 | |
| 			) {
 | |
| 			roundMask = 0;
 | |
| 	overflow:
 | |
| 			float_raise( float_flag_overflow | float_flag_inexact );
 | |
| 			if (    ( roundingMode == float_round_to_zero )
 | |
| 					|| ( zSign && ( roundingMode == float_round_up ) )
 | |
| 					|| ( ! zSign && ( roundingMode == float_round_down ) )
 | |
| 				) {
 | |
| 				return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 | |
| 			}
 | |
| 			return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 		}
 | |
| 		if ( zExp <= 0 ) {
 | |
| 			isTiny =
 | |
| 					( float_detect_tininess == float_tininess_before_rounding )
 | |
| 				|| ( zExp < 0 )
 | |
| 				|| ! increment
 | |
| 				|| ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 | |
| 			shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 | |
| 			zExp = 0;
 | |
| 			if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
 | |
| 			if ( zSig1 ) float_exception_flags |= float_flag_inexact;
 | |
| 			if ( roundNearestEven ) {
 | |
| 				increment = ( (sbits64) zSig1 < 0 );
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( zSign ) {
 | |
| 					increment = ( roundingMode == float_round_down ) && zSig1;
 | |
| 				}
 | |
| 				else {
 | |
| 					increment = ( roundingMode == float_round_up ) && zSig1;
 | |
| 				}
 | |
| 			}
 | |
| 			if ( increment ) {
 | |
| 				++zSig0;
 | |
| 				zSig0 &=
 | |
| 					~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
| 				if ( (sbits64) zSig0 < 0 ) zExp = 1;
 | |
| 			}
 | |
| 			return packFloatx80( zSign, zExp, zSig0 );
 | |
| 		}
 | |
| 	}
 | |
| 	if ( zSig1 ) float_exception_flags |= float_flag_inexact;
 | |
| 	if ( increment ) {
 | |
| 		++zSig0;
 | |
| 		if ( zSig0 == 0 ) {
 | |
| 			++zExp;
 | |
| 			zSig0 = LIT64( 0x8000000000000000 );
 | |
| 		}
 | |
| 		else {
 | |
| 			zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( zSig0 == 0 ) zExp = 0;
 | |
| 	}
 | |
| 	return packFloatx80( zSign, zExp, zSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent
 | |
| | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloatx80' except that the input significand does not have to be
 | |
| | normalized.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80
 | |
| 	normalizeRoundAndPackFloatx80(
 | |
| 		int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 | |
| 	)
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	if ( zSig0 == 0 ) {
 | |
| 		zSig0 = zSig1;
 | |
| 		zSig1 = 0;
 | |
| 		zExp -= 64;
 | |
| 	}
 | |
| 	shiftCount = countLeadingZeros64( zSig0 );
 | |
| 	shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
| 	zExp -= shiftCount;
 | |
| 	return
 | |
| 		roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the least-significant 64 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline bits64 extractFloat128Frac1( float128 a )
 | |
| {
 | |
| 	return a.low;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the most-significant 48 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline bits64 extractFloat128Frac0( float128 a )
 | |
| {
 | |
| 	return a.high & LIT64( 0x0000FFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the quadruple-precision floating-point value
 | |
| | `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline int32 extractFloat128Exp( float128 a )
 | |
| {
 | |
| 	return ( a.high>>48 ) & 0x7FFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the quadruple-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline flag extractFloat128Sign( float128 a )
 | |
| {
 | |
| 	return a.high>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal quadruple-precision floating-point value
 | |
| | represented by the denormalized significand formed by the concatenation of
 | |
| | `aSig0' and `aSig1'.  The normalized exponent is stored at the location
 | |
| | pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
 | |
| | significand are stored at the location pointed to by `zSig0Ptr', and the
 | |
| | least significant 64 bits of the normalized significand are stored at the
 | |
| | location pointed to by `zSig1Ptr'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
| 	normalizeFloat128Subnormal(
 | |
| 		bits64 aSig0,
 | |
| 		bits64 aSig1,
 | |
| 		int32 *zExpPtr,
 | |
| 		bits64 *zSig0Ptr,
 | |
| 		bits64 *zSig1Ptr
 | |
| 	)
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	if ( aSig0 == 0 ) {
 | |
| 		shiftCount = countLeadingZeros64( aSig1 ) - 15;
 | |
| 		if ( shiftCount < 0 ) {
 | |
| 			*zSig0Ptr = aSig1>>( - shiftCount );
 | |
| 			*zSig1Ptr = aSig1<<( shiftCount & 63 );
 | |
| 		}
 | |
| 		else {
 | |
| 			*zSig0Ptr = aSig1<<shiftCount;
 | |
| 			*zSig1Ptr = 0;
 | |
| 		}
 | |
| 		*zExpPtr = - shiftCount - 63;
 | |
| 	}
 | |
| 	else {
 | |
| 		shiftCount = countLeadingZeros64( aSig0 ) - 15;
 | |
| 		shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
 | |
| 		*zExpPtr = 1 - shiftCount;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 int32_to_float32( int32 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 
 | |
| 	if ( a == 0 ) return 0;
 | |
| 	if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 | |
| 	zSign = ( a < 0 );
 | |
| 	return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 int32_to_float64( int32 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 	uint32 absA;
 | |
| 	int8 shiftCount;
 | |
| 	bits64 zSig;
 | |
| 
 | |
| 	if ( a == 0 ) return 0;
 | |
| 	zSign = ( a < 0 );
 | |
| 	absA = zSign ? - a : a;
 | |
| 	shiftCount = countLeadingZeros32( absA ) + 21;
 | |
| 	zSig = absA;
 | |
| 	return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int32_to_floatx80( int32 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 	uint32 absA;
 | |
| 	int8 shiftCount;
 | |
| 	bits64 zSig;
 | |
| 
 | |
| 	if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
| 	zSign = ( a < 0 );
 | |
| 	absA = zSign ? - a : a;
 | |
| 	shiftCount = countLeadingZeros32( absA ) + 32;
 | |
| 	zSig = absA;
 | |
| 	return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int32_to_float128( int32 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 	uint32 absA;
 | |
| 	int8 shiftCount;
 | |
| 	bits64 zSig0;
 | |
| 
 | |
| 	if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
| 	zSign = ( a < 0 );
 | |
| 	absA = zSign ? - a : a;
 | |
| 	shiftCount = countLeadingZeros32( absA ) + 17;
 | |
| 	zSig0 = absA;
 | |
| 	return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 int64_to_float32( int64 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 	uint64 absA;
 | |
| 	int8 shiftCount;
 | |
| //    bits32 zSig;
 | |
| 
 | |
| 	if ( a == 0 ) return 0;
 | |
| 	zSign = ( a < 0 );
 | |
| 	absA = zSign ? - a : a;
 | |
| 	shiftCount = countLeadingZeros64( absA ) - 40;
 | |
| 	if ( 0 <= shiftCount ) {
 | |
| 		return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
 | |
| 	}
 | |
| 	else {
 | |
| 		shiftCount += 7;
 | |
| 		if ( shiftCount < 0 ) {
 | |
| 			shift64RightJamming( absA, - shiftCount, &absA );
 | |
| 		}
 | |
| 		else {
 | |
| 			absA <<= shiftCount;
 | |
| 		}
 | |
| 		return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 int64_to_float64( int64 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 
 | |
| 	if ( a == 0 ) return 0;
 | |
| 	if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
 | |
| 		return packFloat64( 1, 0x43E, 0 );
 | |
| 	}
 | |
| 	zSign = ( a < 0 );
 | |
| 	return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int64_to_floatx80( int64 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 	uint64 absA;
 | |
| 	int8 shiftCount;
 | |
| 
 | |
| 	if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
| 	zSign = ( a < 0 );
 | |
| 	absA = zSign ? - a : a;
 | |
| 	shiftCount = countLeadingZeros64( absA );
 | |
| 	return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int64_to_float128( int64 a )
 | |
| {
 | |
| 	flag zSign;
 | |
| 	uint64 absA;
 | |
| 	int8 shiftCount;
 | |
| 	int32 zExp;
 | |
| 	bits64 zSig0, zSig1;
 | |
| 
 | |
| 	if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
| 	zSign = ( a < 0 );
 | |
| 	absA = zSign ? - a : a;
 | |
| 	shiftCount = countLeadingZeros64( absA ) + 49;
 | |
| 	zExp = 0x406E - shiftCount;
 | |
| 	if ( 64 <= shiftCount ) {
 | |
| 		zSig1 = 0;
 | |
| 		zSig0 = absA;
 | |
| 		shiftCount -= 64;
 | |
| 	}
 | |
| 	else {
 | |
| 		zSig1 = absA;
 | |
| 		zSig0 = 0;
 | |
| 	}
 | |
| 	shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
| 	return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float32_to_int32( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits32 aSig;
 | |
| 	bits64 aSig64;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
 | |
| 	if ( aExp ) aSig |= 0x00800000;
 | |
| 	shiftCount = 0xAF - aExp;
 | |
| 	aSig64 = aSig;
 | |
| 	aSig64 <<= 32;
 | |
| 	if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
 | |
| 	return roundAndPackInt32( aSign, aSig64 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float32_to_int32_round_to_zero( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits32 aSig;
 | |
| 	int32 z;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	shiftCount = aExp - 0x9E;
 | |
| 	if ( 0 <= shiftCount ) {
 | |
| 		if ( a != 0xCF000000 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 | |
| 		}
 | |
| 		return (sbits32) 0x80000000;
 | |
| 	}
 | |
| 	else if ( aExp <= 0x7E ) {
 | |
| 		if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSig = ( aSig | 0x00800000 )<<8;
 | |
| 	z = aSig>>( - shiftCount );
 | |
| 	if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	if ( aSign ) z = - z;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float32_to_int64( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits32 aSig;
 | |
| 	bits64 aSig64, aSigExtra;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	shiftCount = 0xBE - aExp;
 | |
| 	if ( shiftCount < 0 ) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
| 			return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 		}
 | |
| 		return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 	}
 | |
| 	if ( aExp ) aSig |= 0x00800000;
 | |
| 	aSig64 = aSig;
 | |
| 	aSig64 <<= 40;
 | |
| 	shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
 | |
| 	return roundAndPackInt64( aSign, aSig64, aSigExtra );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float32_to_int64_round_to_zero( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits32 aSig;
 | |
| 	bits64 aSig64;
 | |
| 	int64 z;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	shiftCount = aExp - 0xBE;
 | |
| 	if ( 0 <= shiftCount ) {
 | |
| 		if ( a != 0xDF000000 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
| 				return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 			}
 | |
| 		}
 | |
| 		return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 	}
 | |
| 	else if ( aExp <= 0x7E ) {
 | |
| 		if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSig64 = aSig | 0x00800000;
 | |
| 	aSig64 <<= 40;
 | |
| 	z = aSig64>>( - shiftCount );
 | |
| 	if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	if ( aSign ) z = - z;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float32_to_float64( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits32 aSig;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) );
 | |
| 		return packFloat64( aSign, 0x7FF, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 		--aExp;
 | |
| 	}
 | |
| 	return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float32_to_floatx80( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits32 aSig;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
 | |
| 		return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	aSig |= 0x00800000;
 | |
| 	return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float32_to_float128( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits32 aSig;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
 | |
| 		return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 		--aExp;
 | |
| 	}
 | |
| 	return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the single-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a single-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_round_to_int( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits32 lastBitMask, roundBitsMask;
 | |
| 	int8 roundingMode;
 | |
| 	float32 z;
 | |
| 
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	if ( 0x96 <= aExp ) {
 | |
| 		if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 | |
| 			return propagateFloat32NaN( a, a );
 | |
| 		}
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( aExp <= 0x7E ) {
 | |
| 		if ( (bits32) ( a<<1 ) == 0 ) return a;
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 		aSign = extractFloat32Sign( a );
 | |
| 		switch ( float_rounding_mode ) {
 | |
| 			case float_round_nearest_even:
 | |
| 			if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 | |
| 				return packFloat32( aSign, 0x7F, 0 );
 | |
| 			}
 | |
| 			break;
 | |
| 			case float_round_down:
 | |
| 			return aSign ? 0xBF800000 : 0;
 | |
| 			case float_round_up:
 | |
| 			return aSign ? 0x80000000 : 0x3F800000;
 | |
| 		}
 | |
| 		return packFloat32( aSign, 0, 0 );
 | |
| 	}
 | |
| 	lastBitMask = 1;
 | |
| 	lastBitMask <<= 0x96 - aExp;
 | |
| 	roundBitsMask = lastBitMask - 1;
 | |
| 	z = a;
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	if ( roundingMode == float_round_nearest_even ) {
 | |
| 		z += lastBitMask>>1;
 | |
| 		if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | |
| 	}
 | |
| 	else if ( roundingMode != float_round_to_zero ) {
 | |
| 		if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | |
| 			z += roundBitsMask;
 | |
| 		}
 | |
| 	}
 | |
| 	z &= ~ roundBitsMask;
 | |
| 	if ( z != a ) float_exception_flags |= float_flag_inexact;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the single-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 addFloat32Sigs( float32 a, float32 b, flag zSign )
 | |
| {
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits32 aSig, bSig, zSig;
 | |
| 	int16 expDiff;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	bSig = extractFloat32Frac( b );
 | |
| 	bExp = extractFloat32Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig <<= 6;
 | |
| 	bSig <<= 6;
 | |
| 	if ( 0 < expDiff ) {
 | |
| 		if ( aExp == 0xFF ) {
 | |
| 			if ( aSig ) return propagateFloat32NaN( a, b );
 | |
| 			return a;
 | |
| 		}
 | |
| 		if ( bExp == 0 ) {
 | |
| 			--expDiff;
 | |
| 		}
 | |
| 		else {
 | |
| 			bSig |= 0x20000000;
 | |
| 		}
 | |
| 		shift32RightJamming( bSig, expDiff, &bSig );
 | |
| 		zExp = aExp;
 | |
| 	}
 | |
| 	else if ( expDiff < 0 ) {
 | |
| 		if ( bExp == 0xFF ) {
 | |
| 			if ( bSig ) return propagateFloat32NaN( a, b );
 | |
| 			return packFloat32( zSign, 0xFF, 0 );
 | |
| 		}
 | |
| 		if ( aExp == 0 ) {
 | |
| 			++expDiff;
 | |
| 		}
 | |
| 		else {
 | |
| 			aSig |= 0x20000000;
 | |
| 		}
 | |
| 		shift32RightJamming( aSig, - expDiff, &aSig );
 | |
| 		zExp = bExp;
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp == 0xFF ) {
 | |
| 			if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 | |
| 			return a;
 | |
| 		}
 | |
| 		if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 | |
| 		zSig = 0x40000000 + aSig + bSig;
 | |
| 		zExp = aExp;
 | |
| 		goto roundAndPack;
 | |
| 	}
 | |
| 	aSig |= 0x20000000;
 | |
| 	zSig = ( aSig + bSig )<<1;
 | |
| 	--zExp;
 | |
| 	if ( (sbits32) zSig < 0 ) {
 | |
| 		zSig = aSig + bSig;
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	roundAndPack:
 | |
| 	return roundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the single-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 subFloat32Sigs( float32 a, float32 b, flag zSign )
 | |
| {
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits32 aSig, bSig, zSig;
 | |
| 	int16 expDiff;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	bSig = extractFloat32Frac( b );
 | |
| 	bExp = extractFloat32Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig <<= 7;
 | |
| 	bSig <<= 7;
 | |
| 	if ( 0 < expDiff ) goto aExpBigger;
 | |
| 	if ( expDiff < 0 ) goto bExpBigger;
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig | bSig ) return propagateFloat32NaN( a, b );
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float32_default_nan;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		aExp = 1;
 | |
| 		bExp = 1;
 | |
| 	}
 | |
| 	if ( bSig < aSig ) goto aBigger;
 | |
| 	if ( aSig < bSig ) goto bBigger;
 | |
| 	return packFloat32( float_rounding_mode == float_round_down, 0, 0 );
 | |
| 	bExpBigger:
 | |
| 	if ( bExp == 0xFF ) {
 | |
| 		if ( bSig ) return propagateFloat32NaN( a, b );
 | |
| 		return packFloat32( zSign ^ 1, 0xFF, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		++expDiff;
 | |
| 	}
 | |
| 	else {
 | |
| 		aSig |= 0x40000000;
 | |
| 	}
 | |
| 	shift32RightJamming( aSig, - expDiff, &aSig );
 | |
| 	bSig |= 0x40000000;
 | |
| 	bBigger:
 | |
| 	zSig = bSig - aSig;
 | |
| 	zExp = bExp;
 | |
| 	zSign ^= 1;
 | |
| 	goto normalizeRoundAndPack;
 | |
| 	aExpBigger:
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig ) return propagateFloat32NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		--expDiff;
 | |
| 	}
 | |
| 	else {
 | |
| 		bSig |= 0x40000000;
 | |
| 	}
 | |
| 	shift32RightJamming( bSig, expDiff, &bSig );
 | |
| 	aSig |= 0x40000000;
 | |
| 	aBigger:
 | |
| 	zSig = aSig - bSig;
 | |
| 	zExp = aExp;
 | |
| 	normalizeRoundAndPack:
 | |
| 	--zExp;
 | |
| 	return normalizeRoundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the single-precision floating-point values `a'
 | |
| | and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_add( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return addFloat32Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return subFloat32Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the single-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_sub( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return subFloat32Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return addFloat32Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the single-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_mul( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits32 aSig, bSig;
 | |
| 	bits64 zSig64;
 | |
| 	bits32 zSig;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSig = extractFloat32Frac( b );
 | |
| 	bExp = extractFloat32Exp( b );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
| 			return propagateFloat32NaN( a, b );
 | |
| 		}
 | |
| 		if ( ( bExp | bSig ) == 0 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float32_default_nan;
 | |
| 		}
 | |
| 		return packFloat32( zSign, 0xFF, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0xFF ) {
 | |
| 		if ( bSig ) return propagateFloat32NaN( a, b );
 | |
| 		if ( ( aExp | aSig ) == 0 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float32_default_nan;
 | |
| 		}
 | |
| 		return packFloat32( zSign, 0xFF, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
| 		normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	zExp = aExp + bExp - 0x7F;
 | |
| 	aSig = ( aSig | 0x00800000 )<<7;
 | |
| 	bSig = ( bSig | 0x00800000 )<<8;
 | |
| 	shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
 | |
| 	zSig = zSig64;
 | |
| 	if ( 0 <= (sbits32) ( zSig<<1 ) ) {
 | |
| 		zSig <<= 1;
 | |
| 		--zExp;
 | |
| 	}
 | |
| 	return roundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the single-precision floating-point value `a'
 | |
| | by the corresponding value `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_div( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits32 aSig, bSig, zSig;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSig = extractFloat32Frac( b );
 | |
| 	bExp = extractFloat32Exp( b );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig ) return propagateFloat32NaN( a, b );
 | |
| 		if ( bExp == 0xFF ) {
 | |
| 			if ( bSig ) return propagateFloat32NaN( a, b );
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float32_default_nan;
 | |
| 		}
 | |
| 		return packFloat32( zSign, 0xFF, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0xFF ) {
 | |
| 		if ( bSig ) return propagateFloat32NaN( a, b );
 | |
| 		return packFloat32( zSign, 0, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) {
 | |
| 			if ( ( aExp | aSig ) == 0 ) {
 | |
| 				float_raise( float_flag_invalid );
 | |
| 				return float32_default_nan;
 | |
| 			}
 | |
| 			float_raise( float_flag_divbyzero );
 | |
| 			return packFloat32( zSign, 0xFF, 0 );
 | |
| 		}
 | |
| 		normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	zExp = aExp - bExp + 0x7D;
 | |
| 	aSig = ( aSig | 0x00800000 )<<7;
 | |
| 	bSig = ( bSig | 0x00800000 )<<8;
 | |
| 	if ( bSig <= ( aSig + aSig ) ) {
 | |
| 		aSig >>= 1;
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	zSig = ( ( (bits64) aSig )<<32 ) / bSig;
 | |
| 	if ( ( zSig & 0x3F ) == 0 ) {
 | |
| 		zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
 | |
| 	}
 | |
| 	return roundAndPackFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the single-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_rem( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, zSign;
 | |
| 	int16 aExp, bExp, expDiff;
 | |
| 	bits32 aSig, bSig;
 | |
| 	bits32 q;
 | |
| 	bits64 aSig64, bSig64, q64;
 | |
| 	bits32 alternateASig;
 | |
| 	sbits32 sigMean;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSig = extractFloat32Frac( b );
 | |
| 	bExp = extractFloat32Exp( b );
 | |
| //    bSign = extractFloat32Sign( b );
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
| 			return propagateFloat32NaN( a, b );
 | |
| 		}
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float32_default_nan;
 | |
| 	}
 | |
| 	if ( bExp == 0xFF ) {
 | |
| 		if ( bSig ) return propagateFloat32NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float32_default_nan;
 | |
| 		}
 | |
| 		normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return a;
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig |= 0x00800000;
 | |
| 	bSig |= 0x00800000;
 | |
| 	if ( expDiff < 32 ) {
 | |
| 		aSig <<= 8;
 | |
| 		bSig <<= 8;
 | |
| 		if ( expDiff < 0 ) {
 | |
| 			if ( expDiff < -1 ) return a;
 | |
| 			aSig >>= 1;
 | |
| 		}
 | |
| 		q = ( bSig <= aSig );
 | |
| 		if ( q ) aSig -= bSig;
 | |
| 		if ( 0 < expDiff ) {
 | |
| 			q = ( ( (bits64) aSig )<<32 ) / bSig;
 | |
| 			q >>= 32 - expDiff;
 | |
| 			bSig >>= 2;
 | |
| 			aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
| 		}
 | |
| 		else {
 | |
| 			aSig >>= 2;
 | |
| 			bSig >>= 2;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( bSig <= aSig ) aSig -= bSig;
 | |
| 		aSig64 = ( (bits64) aSig )<<40;
 | |
| 		bSig64 = ( (bits64) bSig )<<40;
 | |
| 		expDiff -= 64;
 | |
| 		while ( 0 < expDiff ) {
 | |
| 			q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
| 			q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
| 			aSig64 = - ( ( bSig * q64 )<<38 );
 | |
| 			expDiff -= 62;
 | |
| 		}
 | |
| 		expDiff += 64;
 | |
| 		q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
| 		q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
| 		q = q64>>( 64 - expDiff );
 | |
| 		bSig <<= 6;
 | |
| 		aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 | |
| 	}
 | |
| 	do {
 | |
| 		alternateASig = aSig;
 | |
| 		++q;
 | |
| 		aSig -= bSig;
 | |
| 	} while ( 0 <= (sbits32) aSig );
 | |
| 	sigMean = aSig + alternateASig;
 | |
| 	if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
| 		aSig = alternateASig;
 | |
| 	}
 | |
| 	zSign = ( (sbits32) aSig < 0 );
 | |
| 	if ( zSign ) aSig = - aSig;
 | |
| 	return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the single-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_sqrt( float32 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, zExp;
 | |
| 	bits32 aSig, zSig;
 | |
| 	bits64 rem, term;
 | |
| 
 | |
| 	aSig = extractFloat32Frac( a );
 | |
| 	aExp = extractFloat32Exp( a );
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	if ( aExp == 0xFF ) {
 | |
| 		if ( aSig ) return propagateFloat32NaN( a, 0 );
 | |
| 		if ( ! aSign ) return a;
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float32_default_nan;
 | |
| 	}
 | |
| 	if ( aSign ) {
 | |
| 		if ( ( aExp | aSig ) == 0 ) return a;
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float32_default_nan;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return 0;
 | |
| 		normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 | |
| 	aSig = ( aSig | 0x00800000 )<<8;
 | |
| 	zSig = estimateSqrt32( aExp, aSig ) + 2;
 | |
| 	if ( ( zSig & 0x7F ) <= 5 ) {
 | |
| 		if ( zSig < 2 ) {
 | |
| 			zSig = 0x7FFFFFFF;
 | |
| 			goto roundAndPack;
 | |
| 		}
 | |
| 		aSig >>= aExp & 1;
 | |
| 		term = ( (bits64) zSig ) * zSig;
 | |
| 		rem = ( ( (bits64) aSig )<<32 ) - term;
 | |
| 		while ( (sbits64) rem < 0 ) {
 | |
| 			--zSig;
 | |
| 			rem += ( ( (bits64) zSig )<<1 ) | 1;
 | |
| 		}
 | |
| 		zSig |= ( rem != 0 );
 | |
| 	}
 | |
| 	shift32RightJamming( zSig, 1, &zSig );
 | |
| 	roundAndPack:
 | |
| 	return roundAndPackFloat32( 0, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float32_eq( float32 a, float32 b )
 | |
| {
 | |
| 	if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
| 			|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
| 		) {
 | |
| 		if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The comparison
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float32_le( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
| 			|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
| 	return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float32_lt( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
| 			|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 | |
| 	return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float32_eq_signaling( float32 a, float32 b )
 | |
| {
 | |
| 	if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
| 			|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float32_le_quiet( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| //    int16 aExp, bExp;
 | |
| 
 | |
| 	if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
| 			|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
| 		) {
 | |
| 		if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 );
 | |
| 	return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float32_lt_quiet( float32 a, float32 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
| 			|| ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
| 		) {
 | |
| 		if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat32Sign( a );
 | |
| 	bSign = extractFloat32Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 );
 | |
| 	return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float64_to_int32( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits64 aSig;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | |
| 	if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
| 	shiftCount = 0x42C - aExp;
 | |
| 	if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 | |
| 	return roundAndPackInt32( aSign, aSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float64_to_int32_round_to_zero( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits64 aSig, savedASig;
 | |
| 	int32 z;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( 0x41E < aExp ) {
 | |
| 		if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	else if ( aExp < 0x3FF ) {
 | |
| 		if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSig |= LIT64( 0x0010000000000000 );
 | |
| 	shiftCount = 0x433 - aExp;
 | |
| 	savedASig = aSig;
 | |
| 	aSig >>= shiftCount;
 | |
| 	z = aSig;
 | |
| 	if ( aSign ) z = - z;
 | |
| 	if ( ( z < 0 ) ^ aSign ) {
 | |
| 	invalid:
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
| 	}
 | |
| 	if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float64_to_int64( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits64 aSig, aSigExtra;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
| 	shiftCount = 0x433 - aExp;
 | |
| 	if ( shiftCount <= 0 ) {
 | |
| 		if ( 0x43E < aExp ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			if (    ! aSign
 | |
| 					|| (    ( aExp == 0x7FF )
 | |
| 						&& ( aSig != LIT64( 0x0010000000000000 ) ) )
 | |
| 				) {
 | |
| 				return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 			}
 | |
| 			return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 		}
 | |
| 		aSigExtra = 0;
 | |
| 		aSig <<= - shiftCount;
 | |
| 	}
 | |
| 	else {
 | |
| 		shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
| 	}
 | |
| 	return roundAndPackInt64( aSign, aSig, aSigExtra );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float64_to_int64_round_to_zero( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, shiftCount;
 | |
| 	bits64 aSig;
 | |
| 	int64 z;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
| 	shiftCount = aExp - 0x433;
 | |
| 	if ( 0 <= shiftCount ) {
 | |
| 		if ( 0x43E <= aExp ) {
 | |
| 			if ( a != LIT64( 0xC3E0000000000000 ) ) {
 | |
| 				float_raise( float_flag_invalid );
 | |
| 				if (    ! aSign
 | |
| 						|| (    ( aExp == 0x7FF )
 | |
| 							&& ( aSig != LIT64( 0x0010000000000000 ) ) )
 | |
| 					) {
 | |
| 					return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 				}
 | |
| 			}
 | |
| 			return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 		}
 | |
| 		z = aSig<<shiftCount;
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp < 0x3FE ) {
 | |
| 			if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		z = aSig>>( - shiftCount );
 | |
| 		if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
| 			float_exception_flags |= float_flag_inexact;
 | |
| 		}
 | |
| 	}
 | |
| 	if ( aSign ) z = - z;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the single-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float64_to_float32( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits64 aSig;
 | |
| 	bits32 zSig;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) );
 | |
| 		return packFloat32( aSign, 0xFF, 0 );
 | |
| 	}
 | |
| 	shift64RightJamming( aSig, 22, &aSig );
 | |
| 	zSig = aSig;
 | |
| 	if ( aExp || zSig ) {
 | |
| 		zSig |= 0x40000000;
 | |
| 		aExp -= 0x381;
 | |
| 	}
 | |
| 	return roundAndPackFloat32( aSign, aExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float64_to_floatx80( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits64 aSig;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
 | |
| 		return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
| 		normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	return
 | |
| 		packFloatx80(
 | |
| 			aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the quadruple-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float64_to_float128( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits64 aSig, zSig0, zSig1;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
 | |
| 		return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
| 		normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
| 		--aExp;
 | |
| 	}
 | |
| 	shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
 | |
| 	return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the double-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a double-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_round_to_int( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits64 lastBitMask, roundBitsMask;
 | |
| 	int8 roundingMode;
 | |
| 	float64 z;
 | |
| 
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	if ( 0x433 <= aExp ) {
 | |
| 		if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
 | |
| 			return propagateFloat64NaN( a, a );
 | |
| 		}
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( aExp < 0x3FF ) {
 | |
| 		if ( (bits64) ( a<<1 ) == 0 ) return a;
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 		aSign = extractFloat64Sign( a );
 | |
| 		switch ( float_rounding_mode ) {
 | |
| 			case float_round_nearest_even:
 | |
| 			if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
 | |
| 				return packFloat64( aSign, 0x3FF, 0 );
 | |
| 			}
 | |
| 			break;
 | |
| 			case float_round_down:
 | |
| 			return aSign ? LIT64( 0xBFF0000000000000 ) : 0;
 | |
| 			case float_round_up:
 | |
| 			return
 | |
| 			aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 );
 | |
| 		}
 | |
| 		return packFloat64( aSign, 0, 0 );
 | |
| 	}
 | |
| 	lastBitMask = 1;
 | |
| 	lastBitMask <<= 0x433 - aExp;
 | |
| 	roundBitsMask = lastBitMask - 1;
 | |
| 	z = a;
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	if ( roundingMode == float_round_nearest_even ) {
 | |
| 		z += lastBitMask>>1;
 | |
| 		if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | |
| 	}
 | |
| 	else if ( roundingMode != float_round_to_zero ) {
 | |
| 		if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | |
| 			z += roundBitsMask;
 | |
| 		}
 | |
| 	}
 | |
| 	z &= ~ roundBitsMask;
 | |
| 	if ( z != a ) float_exception_flags |= float_flag_inexact;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the double-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 addFloat64Sigs( float64 a, float64 b, flag zSign )
 | |
| {
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig;
 | |
| 	int16 expDiff;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	bSig = extractFloat64Frac( b );
 | |
| 	bExp = extractFloat64Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig <<= 9;
 | |
| 	bSig <<= 9;
 | |
| 	if ( 0 < expDiff ) {
 | |
| 		if ( aExp == 0x7FF ) {
 | |
| 			if ( aSig ) return propagateFloat64NaN( a, b );
 | |
| 			return a;
 | |
| 		}
 | |
| 		if ( bExp == 0 ) {
 | |
| 			--expDiff;
 | |
| 		}
 | |
| 		else {
 | |
| 			bSig |= LIT64( 0x2000000000000000 );
 | |
| 		}
 | |
| 		shift64RightJamming( bSig, expDiff, &bSig );
 | |
| 		zExp = aExp;
 | |
| 	}
 | |
| 	else if ( expDiff < 0 ) {
 | |
| 		if ( bExp == 0x7FF ) {
 | |
| 			if ( bSig ) return propagateFloat64NaN( a, b );
 | |
| 			return packFloat64( zSign, 0x7FF, 0 );
 | |
| 		}
 | |
| 		if ( aExp == 0 ) {
 | |
| 			++expDiff;
 | |
| 		}
 | |
| 		else {
 | |
| 			aSig |= LIT64( 0x2000000000000000 );
 | |
| 		}
 | |
| 		shift64RightJamming( aSig, - expDiff, &aSig );
 | |
| 		zExp = bExp;
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp == 0x7FF ) {
 | |
| 			if ( aSig | bSig ) return propagateFloat64NaN( a, b );
 | |
| 			return a;
 | |
| 		}
 | |
| 		if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
 | |
| 		zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
 | |
| 		zExp = aExp;
 | |
| 		goto roundAndPack;
 | |
| 	}
 | |
| 	aSig |= LIT64( 0x2000000000000000 );
 | |
| 	zSig = ( aSig + bSig )<<1;
 | |
| 	--zExp;
 | |
| 	if ( (sbits64) zSig < 0 ) {
 | |
| 		zSig = aSig + bSig;
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	roundAndPack:
 | |
| 	return roundAndPackFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 subFloat64Sigs( float64 a, float64 b, flag zSign )
 | |
| {
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig;
 | |
| 	int16 expDiff;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	bSig = extractFloat64Frac( b );
 | |
| 	bExp = extractFloat64Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig <<= 10;
 | |
| 	bSig <<= 10;
 | |
| 	if ( 0 < expDiff ) goto aExpBigger;
 | |
| 	if ( expDiff < 0 ) goto bExpBigger;
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig | bSig ) return propagateFloat64NaN( a, b );
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float64_default_nan;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		aExp = 1;
 | |
| 		bExp = 1;
 | |
| 	}
 | |
| 	if ( bSig < aSig ) goto aBigger;
 | |
| 	if ( aSig < bSig ) goto bBigger;
 | |
| 	return packFloat64( float_rounding_mode == float_round_down, 0, 0 );
 | |
| 	bExpBigger:
 | |
| 	if ( bExp == 0x7FF ) {
 | |
| 		if ( bSig ) return propagateFloat64NaN( a, b );
 | |
| 		return packFloat64( zSign ^ 1, 0x7FF, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		++expDiff;
 | |
| 	}
 | |
| 	else {
 | |
| 		aSig |= LIT64( 0x4000000000000000 );
 | |
| 	}
 | |
| 	shift64RightJamming( aSig, - expDiff, &aSig );
 | |
| 	bSig |= LIT64( 0x4000000000000000 );
 | |
| 	bBigger:
 | |
| 	zSig = bSig - aSig;
 | |
| 	zExp = bExp;
 | |
| 	zSign ^= 1;
 | |
| 	goto normalizeRoundAndPack;
 | |
| 	aExpBigger:
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig ) return propagateFloat64NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		--expDiff;
 | |
| 	}
 | |
| 	else {
 | |
| 		bSig |= LIT64( 0x4000000000000000 );
 | |
| 	}
 | |
| 	shift64RightJamming( bSig, expDiff, &bSig );
 | |
| 	aSig |= LIT64( 0x4000000000000000 );
 | |
| 	aBigger:
 | |
| 	zSig = aSig - bSig;
 | |
| 	zExp = aExp;
 | |
| 	normalizeRoundAndPack:
 | |
| 	--zExp;
 | |
| 	return normalizeRoundAndPackFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the double-precision floating-point values `a'
 | |
| | and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_add( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return addFloat64Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return subFloat64Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the double-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_sub( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return subFloat64Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return addFloat64Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the double-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_mul( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig0, zSig1;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSig = extractFloat64Frac( b );
 | |
| 	bExp = extractFloat64Exp( b );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
| 			return propagateFloat64NaN( a, b );
 | |
| 		}
 | |
| 		if ( ( bExp | bSig ) == 0 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float64_default_nan;
 | |
| 		}
 | |
| 		return packFloat64( zSign, 0x7FF, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0x7FF ) {
 | |
| 		if ( bSig ) return propagateFloat64NaN( a, b );
 | |
| 		if ( ( aExp | aSig ) == 0 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float64_default_nan;
 | |
| 		}
 | |
| 		return packFloat64( zSign, 0x7FF, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
| 		normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
| 		normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	zExp = aExp + bExp - 0x3FF;
 | |
| 	aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | |
| 	bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
| 	mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
| 	zSig0 |= ( zSig1 != 0 );
 | |
| 	if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
 | |
| 		zSig0 <<= 1;
 | |
| 		--zExp;
 | |
| 	}
 | |
| 	return roundAndPackFloat64( zSign, zExp, zSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the double-precision floating-point value `a'
 | |
| | by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_div( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int16 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig;
 | |
| 	bits64 rem0, rem1;
 | |
| 	bits64 term0, term1;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSig = extractFloat64Frac( b );
 | |
| 	bExp = extractFloat64Exp( b );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig ) return propagateFloat64NaN( a, b );
 | |
| 		if ( bExp == 0x7FF ) {
 | |
| 			if ( bSig ) return propagateFloat64NaN( a, b );
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float64_default_nan;
 | |
| 		}
 | |
| 		return packFloat64( zSign, 0x7FF, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0x7FF ) {
 | |
| 		if ( bSig ) return propagateFloat64NaN( a, b );
 | |
| 		return packFloat64( zSign, 0, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) {
 | |
| 			if ( ( aExp | aSig ) == 0 ) {
 | |
| 				float_raise( float_flag_invalid );
 | |
| 				return float64_default_nan;
 | |
| 			}
 | |
| 			float_raise( float_flag_divbyzero );
 | |
| 			return packFloat64( zSign, 0x7FF, 0 );
 | |
| 		}
 | |
| 		normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
| 		normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	zExp = aExp - bExp + 0x3FD;
 | |
| 	aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | |
| 	bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
| 	if ( bSig <= ( aSig + aSig ) ) {
 | |
| 		aSig >>= 1;
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	zSig = estimateDiv128To64( aSig, 0, bSig );
 | |
| 	if ( ( zSig & 0x1FF ) <= 2 ) {
 | |
| 		mul64To128( bSig, zSig, &term0, &term1 );
 | |
| 		sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
| 		while ( (sbits64) rem0 < 0 ) {
 | |
| 			--zSig;
 | |
| 			add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
| 		}
 | |
| 		zSig |= ( rem1 != 0 );
 | |
| 	}
 | |
| 	return roundAndPackFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the double-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_rem( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, zSign;
 | |
| 	int16 aExp, bExp, expDiff;
 | |
| 	bits64 aSig, bSig;
 | |
| 	bits64 q, alternateASig;
 | |
| 	sbits64 sigMean;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSig = extractFloat64Frac( b );
 | |
| 	bExp = extractFloat64Exp( b );
 | |
| //    bSign = extractFloat64Sign( b );
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
| 			return propagateFloat64NaN( a, b );
 | |
| 		}
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float64_default_nan;
 | |
| 	}
 | |
| 	if ( bExp == 0x7FF ) {
 | |
| 		if ( bSig ) return propagateFloat64NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			return float64_default_nan;
 | |
| 		}
 | |
| 		normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return a;
 | |
| 		normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
| 	bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
| 	if ( expDiff < 0 ) {
 | |
| 		if ( expDiff < -1 ) return a;
 | |
| 		aSig >>= 1;
 | |
| 	}
 | |
| 	q = ( bSig <= aSig );
 | |
| 	if ( q ) aSig -= bSig;
 | |
| 	expDiff -= 64;
 | |
| 	while ( 0 < expDiff ) {
 | |
| 		q = estimateDiv128To64( aSig, 0, bSig );
 | |
| 		q = ( 2 < q ) ? q - 2 : 0;
 | |
| 		aSig = - ( ( bSig>>2 ) * q );
 | |
| 		expDiff -= 62;
 | |
| 	}
 | |
| 	expDiff += 64;
 | |
| 	if ( 0 < expDiff ) {
 | |
| 		q = estimateDiv128To64( aSig, 0, bSig );
 | |
| 		q = ( 2 < q ) ? q - 2 : 0;
 | |
| 		q >>= 64 - expDiff;
 | |
| 		bSig >>= 2;
 | |
| 		aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
| 	}
 | |
| 	else {
 | |
| 		aSig >>= 2;
 | |
| 		bSig >>= 2;
 | |
| 	}
 | |
| 	do {
 | |
| 		alternateASig = aSig;
 | |
| 		++q;
 | |
| 		aSig -= bSig;
 | |
| 	} while ( 0 <= (sbits64) aSig );
 | |
| 	sigMean = aSig + alternateASig;
 | |
| 	if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
| 		aSig = alternateASig;
 | |
| 	}
 | |
| 	zSign = ( (sbits64) aSig < 0 );
 | |
| 	if ( zSign ) aSig = - aSig;
 | |
| 	return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the double-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_sqrt( float64 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp, zExp;
 | |
| 	bits64 aSig, zSig, doubleZSig;
 | |
| 	bits64 rem0, rem1, term0, term1;
 | |
| //    float64 z;
 | |
| 
 | |
| 	aSig = extractFloat64Frac( a );
 | |
| 	aExp = extractFloat64Exp( a );
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	if ( aExp == 0x7FF ) {
 | |
| 		if ( aSig ) return propagateFloat64NaN( a, a );
 | |
| 		if ( ! aSign ) return a;
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float64_default_nan;
 | |
| 	}
 | |
| 	if ( aSign ) {
 | |
| 		if ( ( aExp | aSig ) == 0 ) return a;
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return float64_default_nan;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return 0;
 | |
| 		normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 | |
| 	aSig |= LIT64( 0x0010000000000000 );
 | |
| 	zSig = estimateSqrt32( aExp, aSig>>21 );
 | |
| 	aSig <<= 9 - ( aExp & 1 );
 | |
| 	zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
 | |
| 	if ( ( zSig & 0x1FF ) <= 5 ) {
 | |
| 		doubleZSig = zSig<<1;
 | |
| 		mul64To128( zSig, zSig, &term0, &term1 );
 | |
| 		sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
| 		while ( (sbits64) rem0 < 0 ) {
 | |
| 			--zSig;
 | |
| 			doubleZSig -= 2;
 | |
| 			add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
 | |
| 		}
 | |
| 		zSig |= ( ( rem0 | rem1 ) != 0 );
 | |
| 	}
 | |
| 	return roundAndPackFloat64( 0, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float64_eq( float64 a, float64 b )
 | |
| {
 | |
| 	if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
| 			|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
| 		) {
 | |
| 		if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float64_le( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
| 			|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | |
| 	return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float64_lt( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
| 			|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 | |
| 	return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  The invalid exception is raised
 | |
| | if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float64_eq_signaling( float64 a, float64 b )
 | |
| {
 | |
| 	if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
| 			|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float64_le_quiet( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| //    int16 aExp, bExp;
 | |
| 
 | |
| 	if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
| 			|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
| 		) {
 | |
| 		if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 );
 | |
| 	return ( a == b ) || ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float64_lt_quiet( float64 a, float64 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
| 			|| ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
| 		) {
 | |
| 		if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat64Sign( a );
 | |
| 	bSign = extractFloat64Sign( b );
 | |
| 	if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 );
 | |
| 	return ( a != b ) && ( aSign ^ ( a < b ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN, the
 | |
| | largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 floatx80_to_int32( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 | |
| 	shiftCount = 0x4037 - aExp;
 | |
| 	if ( shiftCount <= 0 ) shiftCount = 1;
 | |
| 	shift64RightJamming( aSig, shiftCount, &aSig );
 | |
| 	return roundAndPackInt32( aSign, aSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 floatx80_to_int32_round_to_zero( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig, savedASig;
 | |
| 	int32 z;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	if ( 0x401E < aExp ) {
 | |
| 		if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	else if ( aExp < 0x3FFF ) {
 | |
| 		if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	shiftCount = 0x403E - aExp;
 | |
| 	savedASig = aSig;
 | |
| 	aSig >>= shiftCount;
 | |
| 	z = aSig;
 | |
| 	if ( aSign ) z = - z;
 | |
| 	if ( ( z < 0 ) ^ aSign ) {
 | |
| 	invalid:
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
| 	}
 | |
| 	if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN,
 | |
| | the largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 floatx80_to_int64( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig, aSigExtra;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	shiftCount = 0x403E - aExp;
 | |
| 	if ( shiftCount <= 0 ) {
 | |
| 		if ( shiftCount ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			if (    ! aSign
 | |
| 					|| (    ( aExp == 0x7FFF )
 | |
| 						&& ( aSig != LIT64( 0x8000000000000000 ) ) )
 | |
| 				) {
 | |
| 				return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 			}
 | |
| 			return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 		}
 | |
| 		aSigExtra = 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
| 	}
 | |
| 	return roundAndPackInt64( aSign, aSig, aSigExtra );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 floatx80_to_int64_round_to_zero( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig;
 | |
| 	int64 z;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	shiftCount = aExp - 0x403E;
 | |
| 	if ( 0 <= shiftCount ) {
 | |
| 		aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 		if ( ( a.high != 0xC03E ) || aSig ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
 | |
| 				return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 			}
 | |
| 		}
 | |
| 		return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 	}
 | |
| 	else if ( aExp < 0x3FFF ) {
 | |
| 		if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	z = aSig>>( - shiftCount );
 | |
| 	if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	if ( aSign ) z = - z;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the single-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 floatx80_to_float32( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 aSig;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( aSig<<1 ) ) {
 | |
| 			return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
 | |
| 		}
 | |
| 		return packFloat32( aSign, 0xFF, 0 );
 | |
| 	}
 | |
| 	shift64RightJamming( aSig, 33, &aSig );
 | |
| 	if ( aExp || aSig ) aExp -= 0x3F81;
 | |
| 	return roundAndPackFloat32( aSign, aExp, aSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 floatx80_to_float64( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 aSig, zSig;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( aSig<<1 ) ) {
 | |
| 			return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
 | |
| 		}
 | |
| 		return packFloat64( aSign, 0x7FF, 0 );
 | |
| 	}
 | |
| 	shift64RightJamming( aSig, 1, &zSig );
 | |
| 	if ( aExp || aSig ) aExp -= 0x3C01;
 | |
| 	return roundAndPackFloat64( aSign, aExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the quadruple-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 floatx80_to_float128( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int16 aExp;
 | |
| 	bits64 aSig, zSig0, zSig1;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
 | |
| 		return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
 | |
| 	}
 | |
| 	shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
 | |
| 	return packFloat128( aSign, aExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the extended double-precision floating-point value `a' to an integer,
 | |
| | and returns the result as an extended quadruple-precision floating-point
 | |
| | value.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_round_to_int( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 lastBitMask, roundBitsMask;
 | |
| 	int8 roundingMode;
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	if ( 0x403E <= aExp ) {
 | |
| 		if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
 | |
| 			return propagateFloatx80NaN( a, a );
 | |
| 		}
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( aExp < 0x3FFF ) {
 | |
| 		if (    ( aExp == 0 )
 | |
| 				&& ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
 | |
| 			return a;
 | |
| 		}
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 		aSign = extractFloatx80Sign( a );
 | |
| 		switch ( float_rounding_mode ) {
 | |
| 			case float_round_nearest_even:
 | |
| 			if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
 | |
| 				) {
 | |
| 				return
 | |
| 					packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
| 			}
 | |
| 			break;
 | |
| 			case float_round_down:
 | |
| 			return
 | |
| 					aSign ?
 | |
| 						packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
 | |
| 				: packFloatx80( 0, 0, 0 );
 | |
| 			case float_round_up:
 | |
| 			return
 | |
| 					aSign ? packFloatx80( 1, 0, 0 )
 | |
| 				: packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
| 		}
 | |
| 		return packFloatx80( aSign, 0, 0 );
 | |
| 	}
 | |
| 	lastBitMask = 1;
 | |
| 	lastBitMask <<= 0x403E - aExp;
 | |
| 	roundBitsMask = lastBitMask - 1;
 | |
| 	z = a;
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	if ( roundingMode == float_round_nearest_even ) {
 | |
| 		z.low += lastBitMask>>1;
 | |
| 		if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
| 	}
 | |
| 	else if ( roundingMode != float_round_to_zero ) {
 | |
| 		if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | |
| 			z.low += roundBitsMask;
 | |
| 		}
 | |
| 	}
 | |
| 	z.low &= ~ roundBitsMask;
 | |
| 	if ( z.low == 0 ) {
 | |
| 		++z.high;
 | |
| 		z.low = LIT64( 0x8000000000000000 );
 | |
| 	}
 | |
| 	if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the extended double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
 | |
| | negated before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
 | |
| {
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig0, zSig1;
 | |
| 	int32 expDiff;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	bSig = extractFloatx80Frac( b );
 | |
| 	bExp = extractFloatx80Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	if ( 0 < expDiff ) {
 | |
| 		if ( aExp == 0x7FFF ) {
 | |
| 			if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 			return a;
 | |
| 		}
 | |
| 		if ( bExp == 0 ) --expDiff;
 | |
| 		shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
| 		zExp = aExp;
 | |
| 	}
 | |
| 	else if ( expDiff < 0 ) {
 | |
| 		if ( bExp == 0x7FFF ) {
 | |
| 			if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 			return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 		}
 | |
| 		if ( aExp == 0 ) ++expDiff;
 | |
| 		shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
| 		zExp = bExp;
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp == 0x7FFF ) {
 | |
| 			if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 | |
| 				return propagateFloatx80NaN( a, b );
 | |
| 			}
 | |
| 			return a;
 | |
| 		}
 | |
| 		zSig1 = 0;
 | |
| 		zSig0 = aSig + bSig;
 | |
| 		if ( aExp == 0 ) {
 | |
| 			normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
 | |
| 			goto roundAndPack;
 | |
| 		}
 | |
| 		zExp = aExp;
 | |
| 		goto shiftRight1;
 | |
| 	}
 | |
| 	zSig0 = aSig + bSig;
 | |
| 	if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
 | |
| 	shiftRight1:
 | |
| 	shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
| 	zSig0 |= LIT64( 0x8000000000000000 );
 | |
| 	++zExp;
 | |
| 	roundAndPack:
 | |
| 	return
 | |
| 		roundAndPackFloatx80(
 | |
| 			floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the extended
 | |
| | double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
 | |
| {
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig0, zSig1;
 | |
| 	int32 expDiff;
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	bSig = extractFloatx80Frac( b );
 | |
| 	bExp = extractFloatx80Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	if ( 0 < expDiff ) goto aExpBigger;
 | |
| 	if ( expDiff < 0 ) goto bExpBigger;
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 | |
| 			return propagateFloatx80NaN( a, b );
 | |
| 		}
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		z.low = floatx80_default_nan_low;
 | |
| 		z.high = floatx80_default_nan_high;
 | |
| 		return z;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		aExp = 1;
 | |
| 		bExp = 1;
 | |
| 	}
 | |
| 	zSig1 = 0;
 | |
| 	if ( bSig < aSig ) goto aBigger;
 | |
| 	if ( aSig < bSig ) goto bBigger;
 | |
| 	return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
 | |
| 	bExpBigger:
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 		return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) ++expDiff;
 | |
| 	shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
| 	bBigger:
 | |
| 	sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 | |
| 	zExp = bExp;
 | |
| 	zSign ^= 1;
 | |
| 	goto normalizeRoundAndPack;
 | |
| 	aExpBigger:
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) --expDiff;
 | |
| 	shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
| 	aBigger:
 | |
| 	sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 | |
| 	zExp = aExp;
 | |
| 	normalizeRoundAndPack:
 | |
| 	return
 | |
| 		normalizeRoundAndPackFloatx80(
 | |
| 			floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the extended double-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_add( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return addFloatx80Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return subFloatx80Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sub( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return subFloatx80Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return addFloatx80Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_mul( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig0, zSig1;
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSig = extractFloatx80Frac( b );
 | |
| 	bExp = extractFloatx80Exp( b );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if (    (bits64) ( aSig<<1 )
 | |
| 				|| ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 | |
| 			return propagateFloatx80NaN( a, b );
 | |
| 		}
 | |
| 		if ( ( bExp | bSig ) == 0 ) goto invalid;
 | |
| 		return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 		if ( ( aExp | aSig ) == 0 ) {
 | |
| 	invalid:
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			z.low = floatx80_default_nan_low;
 | |
| 			z.high = floatx80_default_nan_high;
 | |
| 			return z;
 | |
| 		}
 | |
| 		return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
| 		normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
| 		normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	zExp = aExp + bExp - 0x3FFE;
 | |
| 	mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
| 	if ( 0 < (sbits64) zSig0 ) {
 | |
| 		shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
| 		--zExp;
 | |
| 	}
 | |
| 	return
 | |
| 		roundAndPackFloatx80(
 | |
| 			floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the extended double-precision floating-point
 | |
| | value `a' by the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_div( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig, bSig, zSig0, zSig1;
 | |
| 	bits64 rem0, rem1, rem2, term0, term1, term2;
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	aSig = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSig = extractFloatx80Frac( b );
 | |
| 	bExp = extractFloatx80Exp( b );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 		if ( bExp == 0x7FFF ) {
 | |
| 			if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 			goto invalid;
 | |
| 		}
 | |
| 		return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 		return packFloatx80( zSign, 0, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) {
 | |
| 			if ( ( aExp | aSig ) == 0 ) {
 | |
| 	invalid:
 | |
| 				float_raise( float_flag_invalid );
 | |
| 				z.low = floatx80_default_nan_low;
 | |
| 				z.high = floatx80_default_nan_high;
 | |
| 				return z;
 | |
| 			}
 | |
| 			float_raise( float_flag_divbyzero );
 | |
| 			return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 		}
 | |
| 		normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
| 		normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
| 	}
 | |
| 	zExp = aExp - bExp + 0x3FFE;
 | |
| 	rem1 = 0;
 | |
| 	if ( bSig <= aSig ) {
 | |
| 		shift128Right( aSig, 0, 1, &aSig, &rem1 );
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 | |
| 	mul64To128( bSig, zSig0, &term0, &term1 );
 | |
| 	sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 | |
| 	while ( (sbits64) rem0 < 0 ) {
 | |
| 		--zSig0;
 | |
| 		add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
| 	}
 | |
| 	zSig1 = estimateDiv128To64( rem1, 0, bSig );
 | |
| 	if ( (bits64) ( zSig1<<1 ) <= 8 ) {
 | |
| 		mul64To128( bSig, zSig1, &term1, &term2 );
 | |
| 		sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
| 		while ( (sbits64) rem1 < 0 ) {
 | |
| 			--zSig1;
 | |
| 			add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 | |
| 		}
 | |
| 		zSig1 |= ( ( rem1 | rem2 ) != 0 );
 | |
| 	}
 | |
| 	return
 | |
| 		roundAndPackFloatx80(
 | |
| 			floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the extended double-precision floating-point value
 | |
| | `a' with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_rem( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, zSign;
 | |
| 	int32 aExp, bExp, expDiff;
 | |
| 	bits64 aSig0, aSig1, bSig;
 | |
| 	bits64 q, term0, term1, alternateASig0, alternateASig1;
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	aSig0 = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSig = extractFloatx80Frac( b );
 | |
| 	bExp = extractFloatx80Exp( b );
 | |
| //    bSign = extractFloatx80Sign( b );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if (    (bits64) ( aSig0<<1 )
 | |
| 				|| ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 | |
| 			return propagateFloatx80NaN( a, b );
 | |
| 		}
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( bSig == 0 ) {
 | |
| 	invalid:
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			z.low = floatx80_default_nan_low;
 | |
| 			z.high = floatx80_default_nan_high;
 | |
| 			return z;
 | |
| 		}
 | |
| 		normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
 | |
| 		normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
| 	}
 | |
| 	bSig |= LIT64( 0x8000000000000000 );
 | |
| 	zSign = aSign;
 | |
| 	expDiff = aExp - bExp;
 | |
| 	aSig1 = 0;
 | |
| 	if ( expDiff < 0 ) {
 | |
| 		if ( expDiff < -1 ) return a;
 | |
| 		shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 | |
| 		expDiff = 0;
 | |
| 	}
 | |
| 	q = ( bSig <= aSig0 );
 | |
| 	if ( q ) aSig0 -= bSig;
 | |
| 	expDiff -= 64;
 | |
| 	while ( 0 < expDiff ) {
 | |
| 		q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
| 		q = ( 2 < q ) ? q - 2 : 0;
 | |
| 		mul64To128( bSig, q, &term0, &term1 );
 | |
| 		sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
| 		shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 | |
| 		expDiff -= 62;
 | |
| 	}
 | |
| 	expDiff += 64;
 | |
| 	if ( 0 < expDiff ) {
 | |
| 		q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
| 		q = ( 2 < q ) ? q - 2 : 0;
 | |
| 		q >>= 64 - expDiff;
 | |
| 		mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 | |
| 		sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
| 		shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 | |
| 		while ( le128( term0, term1, aSig0, aSig1 ) ) {
 | |
| 			++q;
 | |
| 			sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		term1 = 0;
 | |
| 		term0 = bSig;
 | |
| 	}
 | |
| 	sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 | |
| 	if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
| 			|| (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
| 				&& ( q & 1 ) )
 | |
| 		) {
 | |
| 		aSig0 = alternateASig0;
 | |
| 		aSig1 = alternateASig1;
 | |
| 		zSign = ! zSign;
 | |
| 	}
 | |
| 	return
 | |
| 		normalizeRoundAndPackFloatx80(
 | |
| 			80, zSign, bExp + expDiff, aSig0, aSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the extended double-precision floating-point
 | |
| | value `a'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sqrt( floatx80 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, zExp;
 | |
| 	bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
 | |
| 	bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	aSig0 = extractFloatx80Frac( a );
 | |
| 	aExp = extractFloatx80Exp( a );
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
 | |
| 		if ( ! aSign ) return a;
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	if ( aSign ) {
 | |
| 		if ( ( aExp | aSig0 ) == 0 ) return a;
 | |
| 	invalid:
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		z.low = floatx80_default_nan_low;
 | |
| 		z.high = floatx80_default_nan_high;
 | |
| 		return z;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 | |
| 		normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
| 	}
 | |
| 	zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 | |
| 	zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 | |
| 	shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
 | |
| 	zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
| 	doubleZSig0 = zSig0<<1;
 | |
| 	mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
| 	sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
| 	while ( (sbits64) rem0 < 0 ) {
 | |
| 		--zSig0;
 | |
| 		doubleZSig0 -= 2;
 | |
| 		add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
| 	}
 | |
| 	zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
| 	if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
 | |
| 		if ( zSig1 == 0 ) zSig1 = 1;
 | |
| 		mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
| 		sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
| 		mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
| 		sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
| 		while ( (sbits64) rem1 < 0 ) {
 | |
| 			--zSig1;
 | |
| 			shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
| 			term3 |= 1;
 | |
| 			term2 |= doubleZSig0;
 | |
| 			add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
| 		}
 | |
| 		zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
| 	}
 | |
| 	shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
 | |
| 	zSig0 |= doubleZSig0;
 | |
| 	return
 | |
| 		roundAndPackFloatx80(
 | |
| 			floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag floatx80_eq( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
| 			|| (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
| 		) {
 | |
| 		if (    floatx80_is_signaling_nan( a )
 | |
| 				|| floatx80_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return
 | |
| 			( a.low == b.low )
 | |
| 		&& (    ( a.high == b.high )
 | |
| 				|| (    ( a.low == 0 )
 | |
| 					&& ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
| 			);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than or equal to the corresponding value `b', and 0 otherwise.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag floatx80_le( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
| 			|| (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			|| (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					== 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? le128( b.high, b.low, a.high, a.low )
 | |
| 		: le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than the corresponding value `b', and 0 otherwise.  The comparison
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag floatx80_lt( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
| 			|| (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			&& (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					!= 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
| 		: lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is equal
 | |
| | to the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag floatx80_eq_signaling( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
| 			|| (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return
 | |
| 			( a.low == b.low )
 | |
| 		&& (    ( a.high == b.high )
 | |
| 				|| (    ( a.low == 0 )
 | |
| 					&& ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
| 			);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
 | |
| | do not cause an exception.  Otherwise, the comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag floatx80_le_quiet( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
| 			|| (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
| 		) {
 | |
| 		if (    floatx80_is_signaling_nan( a )
 | |
| 				|| floatx80_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			|| (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					== 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? le128( b.high, b.low, a.high, a.low )
 | |
| 		: le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
 | |
| | an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag floatx80_lt_quiet( floatx80 a, floatx80 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
| 			|| (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
| 				&& (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
| 		) {
 | |
| 		if (    floatx80_is_signaling_nan( a )
 | |
| 				|| floatx80_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloatx80Sign( a );
 | |
| 	bSign = extractFloatx80Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			&& (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					!= 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
| 		: lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float128_to_int32( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig0, aSig1;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | |
| 	if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	aSig0 |= ( aSig1 != 0 );
 | |
| 	shiftCount = 0x4028 - aExp;
 | |
| 	if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
 | |
| 	return roundAndPackInt32( aSign, aSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float128_to_int32_round_to_zero( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig0, aSig1, savedASig;
 | |
| 	int32 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	aSig0 |= ( aSig1 != 0 );
 | |
| 	if ( 0x401E < aExp ) {
 | |
| 		if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	else if ( aExp < 0x3FFF ) {
 | |
| 		if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	shiftCount = 0x402F - aExp;
 | |
| 	savedASig = aSig0;
 | |
| 	aSig0 >>= shiftCount;
 | |
| 	z = aSig0;
 | |
| 	if ( aSign ) z = - z;
 | |
| 	if ( ( z < 0 ) ^ aSign ) {
 | |
| 	invalid:
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
| 	}
 | |
| 	if ( ( aSig0<<shiftCount ) != savedASig ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float128_to_int64( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig0, aSig1;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	shiftCount = 0x402F - aExp;
 | |
| 	if ( shiftCount <= 0 ) {
 | |
| 		if ( 0x403E < aExp ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			if (    ! aSign
 | |
| 					|| (    ( aExp == 0x7FFF )
 | |
| 						&& ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
 | |
| 					)
 | |
| 				) {
 | |
| 				return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 			}
 | |
| 			return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 		}
 | |
| 		shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	else {
 | |
| 		shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	return roundAndPackInt64( aSign, aSig0, aSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float128_to_int64_round_to_zero( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, shiftCount;
 | |
| 	bits64 aSig0, aSig1;
 | |
| 	int64 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	shiftCount = aExp - 0x402F;
 | |
| 	if ( 0 < shiftCount ) {
 | |
| 		if ( 0x403E <= aExp ) {
 | |
| 			aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
 | |
| 			if (    ( a.high == LIT64( 0xC03E000000000000 ) )
 | |
| 					&& ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
 | |
| 				if ( aSig1 ) float_exception_flags |= float_flag_inexact;
 | |
| 			}
 | |
| 			else {
 | |
| 				float_raise( float_flag_invalid );
 | |
| 				if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
 | |
| 					return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
| 				}
 | |
| 			}
 | |
| 			return (sbits64) LIT64( 0x8000000000000000 );
 | |
| 		}
 | |
| 		z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
 | |
| 		if ( (bits64) ( aSig1<<shiftCount ) ) {
 | |
| 			float_exception_flags |= float_flag_inexact;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp < 0x3FFF ) {
 | |
| 			if ( aExp | aSig0 | aSig1 ) {
 | |
| 				float_exception_flags |= float_flag_inexact;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 		z = aSig0>>( - shiftCount );
 | |
| 		if (    aSig1
 | |
| 				|| ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
 | |
| 			float_exception_flags |= float_flag_inexact;
 | |
| 		}
 | |
| 	}
 | |
| 	if ( aSign ) z = - z;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the single-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float128_to_float32( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 aSig0, aSig1;
 | |
| 	bits32 zSig;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 ) {
 | |
| 			return commonNaNToFloat32( float128ToCommonNaN( a ) );
 | |
| 		}
 | |
| 		return packFloat32( aSign, 0xFF, 0 );
 | |
| 	}
 | |
| 	aSig0 |= ( aSig1 != 0 );
 | |
| 	shift64RightJamming( aSig0, 18, &aSig0 );
 | |
| 	zSig = aSig0;
 | |
| 	if ( aExp || zSig ) {
 | |
| 		zSig |= 0x40000000;
 | |
| 		aExp -= 0x3F81;
 | |
| 	}
 | |
| 	return roundAndPackFloat32( aSign, aExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float128_to_float64( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 aSig0, aSig1;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 ) {
 | |
| 			return commonNaNToFloat64( float128ToCommonNaN( a ) );
 | |
| 		}
 | |
| 		return packFloat64( aSign, 0x7FF, 0 );
 | |
| 	}
 | |
| 	shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
| 	aSig0 |= ( aSig1 != 0 );
 | |
| 	if ( aExp || aSig0 ) {
 | |
| 		aSig0 |= LIT64( 0x4000000000000000 );
 | |
| 		aExp -= 0x3C01;
 | |
| 	}
 | |
| 	return roundAndPackFloat64( aSign, aExp, aSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the extended double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float128_to_floatx80( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 aSig0, aSig1;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 ) {
 | |
| 			return commonNaNToFloatx80( float128ToCommonNaN( a ) );
 | |
| 		}
 | |
| 		return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
| 		normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	else {
 | |
| 		aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	}
 | |
| 	shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
 | |
| 	return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the quadruple-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a quadruple-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_round_to_int( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp;
 | |
| 	bits64 lastBitMask, roundBitsMask;
 | |
| 	int8 roundingMode;
 | |
| 	float128 z;
 | |
| 
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	if ( 0x402F <= aExp ) {
 | |
| 		if ( 0x406F <= aExp ) {
 | |
| 			if (    ( aExp == 0x7FFF )
 | |
| 					&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
 | |
| 				) {
 | |
| 				return propagateFloat128NaN( a, a );
 | |
| 			}
 | |
| 			return a;
 | |
| 		}
 | |
| 		lastBitMask = 1;
 | |
| 		lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
 | |
| 		roundBitsMask = lastBitMask - 1;
 | |
| 		z = a;
 | |
| 		roundingMode = float_rounding_mode;
 | |
| 		if ( roundingMode == float_round_nearest_even ) {
 | |
| 			if ( lastBitMask ) {
 | |
| 				add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 | |
| 				if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( (sbits64) z.low < 0 ) {
 | |
| 					++z.high;
 | |
| 					if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		else if ( roundingMode != float_round_to_zero ) {
 | |
| 			if (   extractFloat128Sign( z )
 | |
| 					^ ( roundingMode == float_round_up ) ) {
 | |
| 				add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
 | |
| 			}
 | |
| 		}
 | |
| 		z.low &= ~ roundBitsMask;
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp < 0x3FFF ) {
 | |
| 			if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 | |
| 			float_exception_flags |= float_flag_inexact;
 | |
| 			aSign = extractFloat128Sign( a );
 | |
| 			switch ( float_rounding_mode ) {
 | |
| 				case float_round_nearest_even:
 | |
| 				if (    ( aExp == 0x3FFE )
 | |
| 						&& (   extractFloat128Frac0( a )
 | |
| 							| extractFloat128Frac1( a ) )
 | |
| 					) {
 | |
| 					return packFloat128( aSign, 0x3FFF, 0, 0 );
 | |
| 				}
 | |
| 				break;
 | |
| 				case float_round_down:
 | |
| 				return
 | |
| 						aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
 | |
| 					: packFloat128( 0, 0, 0, 0 );
 | |
| 				case float_round_up:
 | |
| 				return
 | |
| 						aSign ? packFloat128( 1, 0, 0, 0 )
 | |
| 					: packFloat128( 0, 0x3FFF, 0, 0 );
 | |
| 			}
 | |
| 			return packFloat128( aSign, 0, 0, 0 );
 | |
| 		}
 | |
| 		lastBitMask = 1;
 | |
| 		lastBitMask <<= 0x402F - aExp;
 | |
| 		roundBitsMask = lastBitMask - 1;
 | |
| 		z.low = 0;
 | |
| 		z.high = a.high;
 | |
| 		roundingMode = float_rounding_mode;
 | |
| 		if ( roundingMode == float_round_nearest_even ) {
 | |
| 			z.high += lastBitMask>>1;
 | |
| 			if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 | |
| 				z.high &= ~ lastBitMask;
 | |
| 			}
 | |
| 		}
 | |
| 		else if ( roundingMode != float_round_to_zero ) {
 | |
| 			if (   extractFloat128Sign( z )
 | |
| 					^ ( roundingMode == float_round_up ) ) {
 | |
| 				z.high |= ( a.low != 0 );
 | |
| 				z.high += roundBitsMask;
 | |
| 			}
 | |
| 		}
 | |
| 		z.high &= ~ roundBitsMask;
 | |
| 	}
 | |
| 	if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 | |
| 		float_exception_flags |= float_flag_inexact;
 | |
| 	}
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the quadruple-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
 | |
| {
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
| 	int32 expDiff;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	bSig1 = extractFloat128Frac1( b );
 | |
| 	bSig0 = extractFloat128Frac0( b );
 | |
| 	bExp = extractFloat128Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	if ( 0 < expDiff ) {
 | |
| 		if ( aExp == 0x7FFF ) {
 | |
| 			if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
 | |
| 			return a;
 | |
| 		}
 | |
| 		if ( bExp == 0 ) {
 | |
| 			--expDiff;
 | |
| 		}
 | |
| 		else {
 | |
| 			bSig0 |= LIT64( 0x0001000000000000 );
 | |
| 		}
 | |
| 		shift128ExtraRightJamming(
 | |
| 			bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 | |
| 		zExp = aExp;
 | |
| 	}
 | |
| 	else if ( expDiff < 0 ) {
 | |
| 		if ( bExp == 0x7FFF ) {
 | |
| 			if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 | |
| 			return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
| 		}
 | |
| 		if ( aExp == 0 ) {
 | |
| 			++expDiff;
 | |
| 		}
 | |
| 		else {
 | |
| 			aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 		}
 | |
| 		shift128ExtraRightJamming(
 | |
| 			aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 | |
| 		zExp = bExp;
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( aExp == 0x7FFF ) {
 | |
| 			if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
| 				return propagateFloat128NaN( a, b );
 | |
| 			}
 | |
| 			return a;
 | |
| 		}
 | |
| 		add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
| 		if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
 | |
| 		zSig2 = 0;
 | |
| 		zSig0 |= LIT64( 0x0002000000000000 );
 | |
| 		zExp = aExp;
 | |
| 		goto shiftRight1;
 | |
| 	}
 | |
| 	aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
| 	--zExp;
 | |
| 	if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
 | |
| 	++zExp;
 | |
| 	shiftRight1:
 | |
| 	shift128ExtraRightJamming(
 | |
| 		zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
| 	roundAndPack:
 | |
| 	return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the quadruple-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
 | |
| {
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 | |
| 	int32 expDiff;
 | |
| 	float128 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	bSig1 = extractFloat128Frac1( b );
 | |
| 	bSig0 = extractFloat128Frac0( b );
 | |
| 	bExp = extractFloat128Exp( b );
 | |
| 	expDiff = aExp - bExp;
 | |
| 	shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
| 	shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
 | |
| 	if ( 0 < expDiff ) goto aExpBigger;
 | |
| 	if ( expDiff < 0 ) goto bExpBigger;
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
| 			return propagateFloat128NaN( a, b );
 | |
| 		}
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		z.low = float128_default_nan_low;
 | |
| 		z.high = float128_default_nan_high;
 | |
| 		return z;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		aExp = 1;
 | |
| 		bExp = 1;
 | |
| 	}
 | |
| 	if ( bSig0 < aSig0 ) goto aBigger;
 | |
| 	if ( aSig0 < bSig0 ) goto bBigger;
 | |
| 	if ( bSig1 < aSig1 ) goto aBigger;
 | |
| 	if ( aSig1 < bSig1 ) goto bBigger;
 | |
| 	return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
 | |
| 	bExpBigger:
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 | |
| 		return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		++expDiff;
 | |
| 	}
 | |
| 	else {
 | |
| 		aSig0 |= LIT64( 0x4000000000000000 );
 | |
| 	}
 | |
| 	shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
| 	bSig0 |= LIT64( 0x4000000000000000 );
 | |
| 	bBigger:
 | |
| 	sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
| 	zExp = bExp;
 | |
| 	zSign ^= 1;
 | |
| 	goto normalizeRoundAndPack;
 | |
| 	aExpBigger:
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		--expDiff;
 | |
| 	}
 | |
| 	else {
 | |
| 		bSig0 |= LIT64( 0x4000000000000000 );
 | |
| 	}
 | |
| 	shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 | |
| 	aSig0 |= LIT64( 0x4000000000000000 );
 | |
| 	aBigger:
 | |
| 	sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
| 	zExp = aExp;
 | |
| 	normalizeRoundAndPack:
 | |
| 	--zExp;
 | |
| 	return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the quadruple-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_add( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return addFloat128Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return subFloat128Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sub( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	if ( aSign == bSign ) {
 | |
| 		return subFloat128Sigs( a, b, aSign );
 | |
| 	}
 | |
| 	else {
 | |
| 		return addFloat128Sigs( a, b, aSign );
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_mul( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 | |
| 	float128 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSig1 = extractFloat128Frac1( b );
 | |
| 	bSig0 = extractFloat128Frac0( b );
 | |
| 	bExp = extractFloat128Exp( b );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if (    ( aSig0 | aSig1 )
 | |
| 				|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
| 			return propagateFloat128NaN( a, b );
 | |
| 		}
 | |
| 		if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 | |
| 		return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 | |
| 		if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
| 	invalid:
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			z.low = float128_default_nan_low;
 | |
| 			z.high = float128_default_nan_high;
 | |
| 			return z;
 | |
| 		}
 | |
| 		return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
| 		normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
| 		normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
| 	}
 | |
| 	zExp = aExp + bExp - 0x4000;
 | |
| 	aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
 | |
| 	mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 | |
| 	add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
| 	zSig2 |= ( zSig3 != 0 );
 | |
| 	if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
 | |
| 		shift128ExtraRightJamming(
 | |
| 			zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the quadruple-precision floating-point value
 | |
| | `a' by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_div( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign, zSign;
 | |
| 	int32 aExp, bExp, zExp;
 | |
| 	bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
| 	bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 	float128 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSig1 = extractFloat128Frac1( b );
 | |
| 	bSig0 = extractFloat128Frac0( b );
 | |
| 	bExp = extractFloat128Exp( b );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	zSign = aSign ^ bSign;
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
 | |
| 		if ( bExp == 0x7FFF ) {
 | |
| 			if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 | |
| 			goto invalid;
 | |
| 		}
 | |
| 		return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 | |
| 		return packFloat128( zSign, 0, 0, 0 );
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
| 			if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
| 	invalid:
 | |
| 				float_raise( float_flag_invalid );
 | |
| 				z.low = float128_default_nan_low;
 | |
| 				z.high = float128_default_nan_high;
 | |
| 				return z;
 | |
| 			}
 | |
| 			float_raise( float_flag_divbyzero );
 | |
| 			return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
| 		}
 | |
| 		normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
| 		normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	zExp = aExp - bExp + 0x3FFD;
 | |
| 	shortShift128Left(
 | |
| 		aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
 | |
| 	shortShift128Left(
 | |
| 		bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
| 	if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
 | |
| 		shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 | |
| 		++zExp;
 | |
| 	}
 | |
| 	zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
| 	mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 | |
| 	sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 | |
| 	while ( (sbits64) rem0 < 0 ) {
 | |
| 		--zSig0;
 | |
| 		add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 | |
| 	}
 | |
| 	zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
 | |
| 	if ( ( zSig1 & 0x3FFF ) <= 4 ) {
 | |
| 		mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 | |
| 		sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 | |
| 		while ( (sbits64) rem1 < 0 ) {
 | |
| 			--zSig1;
 | |
| 			add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 | |
| 		}
 | |
| 		zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
| 	}
 | |
| 	shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
 | |
| 	return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the quadruple-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_rem( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, zSign;
 | |
| 	int32 aExp, bExp, expDiff;
 | |
| 	bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 | |
| 	bits64 allZero, alternateASig0, alternateASig1, sigMean1;
 | |
| 	sbits64 sigMean0;
 | |
| 	float128 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSig1 = extractFloat128Frac1( b );
 | |
| 	bSig0 = extractFloat128Frac0( b );
 | |
| 	bExp = extractFloat128Exp( b );
 | |
| //    bSign = extractFloat128Sign( b );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if (    ( aSig0 | aSig1 )
 | |
| 				|| ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
| 			return propagateFloat128NaN( a, b );
 | |
| 		}
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	if ( bExp == 0x7FFF ) {
 | |
| 		if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
 | |
| 		return a;
 | |
| 	}
 | |
| 	if ( bExp == 0 ) {
 | |
| 		if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
| 	invalid:
 | |
| 			float_raise( float_flag_invalid );
 | |
| 			z.low = float128_default_nan_low;
 | |
| 			z.high = float128_default_nan_high;
 | |
| 			return z;
 | |
| 		}
 | |
| 		normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( ( aSig0 | aSig1 ) == 0 ) return a;
 | |
| 		normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	expDiff = aExp - bExp;
 | |
| 	if ( expDiff < -1 ) return a;
 | |
| 	shortShift128Left(
 | |
| 		aSig0 | LIT64( 0x0001000000000000 ),
 | |
| 		aSig1,
 | |
| 		15 - ( expDiff < 0 ),
 | |
| 		&aSig0,
 | |
| 		&aSig1
 | |
| 	);
 | |
| 	shortShift128Left(
 | |
| 		bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
| 	q = le128( bSig0, bSig1, aSig0, aSig1 );
 | |
| 	if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
| 	expDiff -= 64;
 | |
| 	while ( 0 < expDiff ) {
 | |
| 		q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
| 		q = ( 4 < q ) ? q - 4 : 0;
 | |
| 		mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
| 		shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
 | |
| 		shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
 | |
| 		sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 | |
| 		expDiff -= 61;
 | |
| 	}
 | |
| 	if ( -64 < expDiff ) {
 | |
| 		q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
| 		q = ( 4 < q ) ? q - 4 : 0;
 | |
| 		q >>= - expDiff;
 | |
| 		shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
| 		expDiff += 52;
 | |
| 		if ( expDiff < 0 ) {
 | |
| 			shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
| 		}
 | |
| 		else {
 | |
| 			shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 | |
| 		}
 | |
| 		mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
| 		sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	else {
 | |
| 		shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
 | |
| 		shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
| 	}
 | |
| 	do {
 | |
| 		alternateASig0 = aSig0;
 | |
| 		alternateASig1 = aSig1;
 | |
| 		++q;
 | |
| 		sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
| 	} while ( 0 <= (sbits64) aSig0 );
 | |
| 	add128(
 | |
| 		aSig0, aSig1, alternateASig0, alternateASig1, (bits64 *)&sigMean0, &sigMean1 );
 | |
| 	if (    ( sigMean0 < 0 )
 | |
| 			|| ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 | |
| 		aSig0 = alternateASig0;
 | |
| 		aSig1 = alternateASig1;
 | |
| 	}
 | |
| 	zSign = ( (sbits64) aSig0 < 0 );
 | |
| 	if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 | |
| 	return
 | |
| 		normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the quadruple-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sqrt( float128 a )
 | |
| {
 | |
| 	flag aSign;
 | |
| 	int32 aExp, zExp;
 | |
| 	bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 | |
| 	bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
| 	float128 z;
 | |
| 
 | |
| 	aSig1 = extractFloat128Frac1( a );
 | |
| 	aSig0 = extractFloat128Frac0( a );
 | |
| 	aExp = extractFloat128Exp( a );
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	if ( aExp == 0x7FFF ) {
 | |
| 		if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
 | |
| 		if ( ! aSign ) return a;
 | |
| 		goto invalid;
 | |
| 	}
 | |
| 	if ( aSign ) {
 | |
| 		if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 | |
| 	invalid:
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		z.low = float128_default_nan_low;
 | |
| 		z.high = float128_default_nan_high;
 | |
| 		return z;
 | |
| 	}
 | |
| 	if ( aExp == 0 ) {
 | |
| 		if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
| 		normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
| 	}
 | |
| 	zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
 | |
| 	aSig0 |= LIT64( 0x0001000000000000 );
 | |
| 	zSig0 = estimateSqrt32( aExp, aSig0>>17 );
 | |
| 	shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
 | |
| 	zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
| 	doubleZSig0 = zSig0<<1;
 | |
| 	mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
| 	sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
| 	while ( (sbits64) rem0 < 0 ) {
 | |
| 		--zSig0;
 | |
| 		doubleZSig0 -= 2;
 | |
| 		add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
| 	}
 | |
| 	zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
| 	if ( ( zSig1 & 0x1FFF ) <= 5 ) {
 | |
| 		if ( zSig1 == 0 ) zSig1 = 1;
 | |
| 		mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
| 		sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
| 		mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
| 		sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
| 		while ( (sbits64) rem1 < 0 ) {
 | |
| 			--zSig1;
 | |
| 			shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
| 			term3 |= 1;
 | |
| 			term2 |= doubleZSig0;
 | |
| 			add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
| 		}
 | |
| 		zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
| 	}
 | |
| 	shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
 | |
| 	return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float128_eq( float128 a, float128 b )
 | |
| {
 | |
| 	if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
| 			|| (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
| 		) {
 | |
| 		if (    float128_is_signaling_nan( a )
 | |
| 				|| float128_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return
 | |
| 			( a.low == b.low )
 | |
| 		&& (    ( a.high == b.high )
 | |
| 				|| (    ( a.low == 0 )
 | |
| 					&& ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
| 			);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The comparison
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float128_le( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
| 			|| (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			|| (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					== 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? le128( b.high, b.low, a.high, a.low )
 | |
| 		: le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float128_lt( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
| 			|| (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			&& (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					!= 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
| 		: lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float128_eq_signaling( float128 a, float128 b )
 | |
| {
 | |
| 	if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
| 			|| (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
| 		) {
 | |
| 		float_raise( float_flag_invalid );
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return
 | |
| 			( a.low == b.low )
 | |
| 		&& (    ( a.high == b.high )
 | |
| 				|| (    ( a.low == 0 )
 | |
| 					&& ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
| 			);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float128_le_quiet( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
| 			|| (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
| 		) {
 | |
| 		if (    float128_is_signaling_nan( a )
 | |
| 				|| float128_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			|| (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					== 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? le128( b.high, b.low, a.high, a.low )
 | |
| 		: le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| flag float128_lt_quiet( float128 a, float128 b )
 | |
| {
 | |
| 	flag aSign, bSign;
 | |
| 
 | |
| 	if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
| 			|| (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
| 				&& ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
| 		) {
 | |
| 		if (    float128_is_signaling_nan( a )
 | |
| 				|| float128_is_signaling_nan( b ) ) {
 | |
| 			float_raise( float_flag_invalid );
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 	aSign = extractFloat128Sign( a );
 | |
| 	bSign = extractFloat128Sign( b );
 | |
| 	if ( aSign != bSign ) {
 | |
| 		return
 | |
| 				aSign
 | |
| 			&& (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
| 					!= 0 );
 | |
| 	}
 | |
| 	return
 | |
| 			aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
| 		: lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 |