latest version of musashi engine includes floating point emulation (plus a few patches to add in missing opcodes needed by ack - see tags JFF & TBB) added a few missing linux syscalls in sim.c pascal now runs pretty well quick test with modula2 passes c gets the floating point numbers wrong, so more work needed here other languages untested plat/linux68k/emu/build.lua is probably not quite right - the softfloat directory is compiled in the wrong place
		
			
				
	
	
		
			460 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			460 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*============================================================================
 | |
| 
 | |
| This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
 | |
| Package, Release 2b.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
 | |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
 | |
| RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
 | |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
 | |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
 | |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
 | |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
 | |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) the source code for the derivative work includes prominent notice that
 | |
| the work is derivative, and (2) the source code includes prominent notice with
 | |
| these four paragraphs for those parts of this code that are retained.
 | |
| 
 | |
| =============================================================================*/
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The macro `FLOATX80' must be defined to enable the extended double-precision
 | |
| | floating-point format `floatx80'.  If this macro is not defined, the
 | |
| | `floatx80' type will not be defined, and none of the functions that either
 | |
| | input or output the `floatx80' type will be defined.  The same applies to
 | |
| | the `FLOAT128' macro and the quadruple-precision format `float128'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #define FLOATX80
 | |
| #define FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point types.
 | |
| *----------------------------------------------------------------------------*/
 | |
| typedef bits32 float32;
 | |
| typedef bits64 float64;
 | |
| #ifdef FLOATX80
 | |
| typedef struct {
 | |
| 	bits16 high;
 | |
| 	bits64 low;
 | |
| } floatx80;
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| typedef struct {
 | |
| 	bits64 high, low;
 | |
| } float128;
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Primitive arithmetic functions, including multi-word arithmetic, and
 | |
| | division and square root approximations.  (Can be specialized to target if
 | |
| | desired.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-macros"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point underflow tininess-detection mode.
 | |
| *----------------------------------------------------------------------------*/
 | |
| extern int8 float_detect_tininess;
 | |
| enum {
 | |
| 	float_tininess_after_rounding  = 0,
 | |
| 	float_tininess_before_rounding = 1
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point rounding mode.
 | |
| *----------------------------------------------------------------------------*/
 | |
| extern int8 float_rounding_mode;
 | |
| enum {
 | |
| 	float_round_nearest_even = 0,
 | |
| 	float_round_to_zero      = 1,
 | |
| 	float_round_down         = 2,
 | |
| 	float_round_up           = 3
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point exception flags.
 | |
| *----------------------------------------------------------------------------*/
 | |
| extern int8 float_exception_flags;
 | |
| enum {
 | |
| 	float_flag_invalid = 0x01, float_flag_denormal = 0x02, float_flag_divbyzero = 0x04, float_flag_overflow = 0x08,
 | |
| 	float_flag_underflow = 0x10, float_flag_inexact = 0x20
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Routine to raise any or all of the software IEC/IEEE floating-point
 | |
| | exception flags.
 | |
| *----------------------------------------------------------------------------*/
 | |
| void float_raise( int8 );
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE integer-to-floating-point conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 int32_to_float32( int32 );
 | |
| float64 int32_to_float64( int32 );
 | |
| #ifdef FLOATX80
 | |
| floatx80 int32_to_floatx80( int32 );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 int32_to_float128( int32 );
 | |
| #endif
 | |
| float32 int64_to_float32( int64 );
 | |
| float64 int64_to_float64( int64 );
 | |
| #ifdef FLOATX80
 | |
| floatx80 int64_to_floatx80( int64 );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 int64_to_float128( int64 );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int32 float32_to_int32( float32 );
 | |
| int32 float32_to_int32_round_to_zero( float32 );
 | |
| int64 float32_to_int64( float32 );
 | |
| int64 float32_to_int64_round_to_zero( float32 );
 | |
| float64 float32_to_float64( float32 );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float32_to_floatx80( float32 );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float32_to_float128( float32 );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_round_to_int( float32 );
 | |
| float32 float32_add( float32, float32 );
 | |
| float32 float32_sub( float32, float32 );
 | |
| float32 float32_mul( float32, float32 );
 | |
| float32 float32_div( float32, float32 );
 | |
| float32 float32_rem( float32, float32 );
 | |
| float32 float32_sqrt( float32 );
 | |
| flag float32_eq( float32, float32 );
 | |
| flag float32_le( float32, float32 );
 | |
| flag float32_lt( float32, float32 );
 | |
| flag float32_eq_signaling( float32, float32 );
 | |
| flag float32_le_quiet( float32, float32 );
 | |
| flag float32_lt_quiet( float32, float32 );
 | |
| flag float32_is_signaling_nan( float32 );
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int32 float64_to_int32( float64 );
 | |
| int32 float64_to_int32_round_to_zero( float64 );
 | |
| int64 float64_to_int64( float64 );
 | |
| int64 float64_to_int64_round_to_zero( float64 );
 | |
| float32 float64_to_float32( float64 );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float64_to_floatx80( float64 );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float64_to_float128( float64 );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_round_to_int( float64 );
 | |
| float64 float64_add( float64, float64 );
 | |
| float64 float64_sub( float64, float64 );
 | |
| float64 float64_mul( float64, float64 );
 | |
| float64 float64_div( float64, float64 );
 | |
| float64 float64_rem( float64, float64 );
 | |
| float64 float64_sqrt( float64 );
 | |
| flag float64_eq( float64, float64 );
 | |
| flag float64_le( float64, float64 );
 | |
| flag float64_lt( float64, float64 );
 | |
| flag float64_eq_signaling( float64, float64 );
 | |
| flag float64_le_quiet( float64, float64 );
 | |
| flag float64_lt_quiet( float64, float64 );
 | |
| flag float64_is_signaling_nan( float64 );
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int32 floatx80_to_int32( floatx80 );
 | |
| int32 floatx80_to_int32_round_to_zero( floatx80 );
 | |
| int64 floatx80_to_int64( floatx80 );
 | |
| int64 floatx80_to_int64_round_to_zero( floatx80 );
 | |
| float32 floatx80_to_float32( floatx80 );
 | |
| float64 floatx80_to_float64( floatx80 );
 | |
| #ifdef FLOAT128
 | |
| float128 floatx80_to_float128( floatx80 );
 | |
| #endif
 | |
| floatx80 floatx80_scale(floatx80 a, floatx80 b);
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
 | |
| | extended double-precision floating-point value, returning the result.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
 | |
| {
 | |
| 	floatx80 z;
 | |
| 
 | |
| 	z.low = zSig;
 | |
| 	z.high = ( ( (bits16) zSign )<<15 ) + zExp;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision rounding precision.  Valid
 | |
| | values are 32, 64, and 80.
 | |
| *----------------------------------------------------------------------------*/
 | |
| extern int8 floatx80_rounding_precision;
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| floatx80 floatx80_round_to_int( floatx80 );
 | |
| floatx80 floatx80_add( floatx80, floatx80 );
 | |
| floatx80 floatx80_sub( floatx80, floatx80 );
 | |
| floatx80 floatx80_mul( floatx80, floatx80 );
 | |
| floatx80 floatx80_div( floatx80, floatx80 );
 | |
| floatx80 floatx80_rem( floatx80, floatx80 );
 | |
| floatx80 floatx80_sqrt( floatx80 );
 | |
| flag floatx80_eq( floatx80, floatx80 );
 | |
| flag floatx80_le( floatx80, floatx80 );
 | |
| flag floatx80_lt( floatx80, floatx80 );
 | |
| flag floatx80_eq_signaling( floatx80, floatx80 );
 | |
| flag floatx80_le_quiet( floatx80, floatx80 );
 | |
| flag floatx80_lt_quiet( floatx80, floatx80 );
 | |
| flag floatx80_is_signaling_nan( floatx80 );
 | |
| 
 | |
| /* int floatx80_fsin(floatx80 &a);
 | |
| int floatx80_fcos(floatx80 &a);
 | |
| int floatx80_ftan(floatx80 &a); */
 | |
| 
 | |
| floatx80 floatx80_flognp1(floatx80 a);
 | |
| floatx80 floatx80_flogn(floatx80 a);
 | |
| floatx80 floatx80_flog2(floatx80 a);
 | |
| floatx80 floatx80_flog10(floatx80 a);
 | |
| 
 | |
| // roundAndPackFloatx80 used to be in softfloat-round-pack, is now in softfloat.c
 | |
| floatx80 roundAndPackFloatx80(int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE quadruple-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int32 float128_to_int32( float128 );
 | |
| int32 float128_to_int32_round_to_zero( float128 );
 | |
| int64 float128_to_int64( float128 );
 | |
| int64 float128_to_int64_round_to_zero( float128 );
 | |
| float32 float128_to_float32( float128 );
 | |
| float64 float128_to_float64( float128 );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float128_to_floatx80( float128 );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE quadruple-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float128 float128_round_to_int( float128 );
 | |
| float128 float128_add( float128, float128 );
 | |
| float128 float128_sub( float128, float128 );
 | |
| float128 float128_mul( float128, float128 );
 | |
| float128 float128_div( float128, float128 );
 | |
| float128 float128_rem( float128, float128 );
 | |
| float128 float128_sqrt( float128 );
 | |
| flag float128_eq( float128, float128 );
 | |
| flag float128_le( float128, float128 );
 | |
| flag float128_lt( float128, float128 );
 | |
| flag float128_eq_signaling( float128, float128 );
 | |
| flag float128_le_quiet( float128, float128 );
 | |
| flag float128_lt_quiet( float128, float128 );
 | |
| flag float128_is_signaling_nan( float128 );
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', the exponent `zExp', and the significand formed
 | |
| | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
 | |
| | floating-point value, returning the result.  After being shifted into the
 | |
| | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
 | |
| | added together to form the most significant 32 bits of the result.  This
 | |
| | means that any integer portion of `zSig0' will be added into the exponent.
 | |
| | Since a properly normalized significand will have an integer portion equal
 | |
| | to 1, the `zExp' input should be 1 less than the desired result exponent
 | |
| | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float128
 | |
| 	packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
 | |
| {
 | |
| 	float128 z;
 | |
| 
 | |
| 	z.low = zSig1;
 | |
| 	z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
 | |
| 	return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0', `zSig1',
 | |
| | and `zSig2', and returns the proper quadruple-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | simply rounded and packed into the quadruple-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal quadruple-
 | |
| | precision floating-point number.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  In the
 | |
| | usual case that the input significand is normalized, `zExp' must be 1 less
 | |
| | than the ``true'' floating-point exponent.  The handling of underflow and
 | |
| | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float128
 | |
| 	roundAndPackFloat128(
 | |
| 		flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
 | |
| {
 | |
| 	int8 roundingMode;
 | |
| 	flag roundNearestEven, increment, isTiny;
 | |
| 
 | |
| 	roundingMode = float_rounding_mode;
 | |
| 	roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
| 	increment = ( (sbits64) zSig2 < 0 );
 | |
| 	if ( ! roundNearestEven ) {
 | |
| 		if ( roundingMode == float_round_to_zero ) {
 | |
| 			increment = 0;
 | |
| 		}
 | |
| 		else {
 | |
| 			if ( zSign ) {
 | |
| 				increment = ( roundingMode == float_round_down ) && zSig2;
 | |
| 			}
 | |
| 			else {
 | |
| 				increment = ( roundingMode == float_round_up ) && zSig2;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if ( 0x7FFD <= (bits32) zExp ) {
 | |
| 		if (    ( 0x7FFD < zExp )
 | |
| 				|| (    ( zExp == 0x7FFD )
 | |
| 					&& eq128(
 | |
| 							LIT64( 0x0001FFFFFFFFFFFF ),
 | |
| 							LIT64( 0xFFFFFFFFFFFFFFFF ),
 | |
| 							zSig0,
 | |
| 							zSig1
 | |
| 						)
 | |
| 					&& increment
 | |
| 				)
 | |
| 			) {
 | |
| 			float_raise( float_flag_overflow | float_flag_inexact );
 | |
| 			if (    ( roundingMode == float_round_to_zero )
 | |
| 					|| ( zSign && ( roundingMode == float_round_up ) )
 | |
| 					|| ( ! zSign && ( roundingMode == float_round_down ) )
 | |
| 				) {
 | |
| 				return
 | |
| 					packFloat128(
 | |
| 						zSign,
 | |
| 						0x7FFE,
 | |
| 						LIT64( 0x0000FFFFFFFFFFFF ),
 | |
| 						LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
| 					);
 | |
| 			}
 | |
| 			return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
| 		}
 | |
| 		if ( zExp < 0 ) {
 | |
| 			isTiny =
 | |
| 					( float_detect_tininess == float_tininess_before_rounding )
 | |
| 				|| ( zExp < -1 )
 | |
| 				|| ! increment
 | |
| 				|| lt128(
 | |
| 						zSig0,
 | |
| 						zSig1,
 | |
| 						LIT64( 0x0001FFFFFFFFFFFF ),
 | |
| 						LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
| 					);
 | |
| 			shift128ExtraRightJamming(
 | |
| 				zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
 | |
| 			zExp = 0;
 | |
| 			if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
 | |
| 			if ( roundNearestEven ) {
 | |
| 				increment = ( (sbits64) zSig2 < 0 );
 | |
| 			}
 | |
| 			else {
 | |
| 				if ( zSign ) {
 | |
| 					increment = ( roundingMode == float_round_down ) && zSig2;
 | |
| 				}
 | |
| 				else {
 | |
| 					increment = ( roundingMode == float_round_up ) && zSig2;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if ( zSig2 ) float_exception_flags |= float_flag_inexact;
 | |
| 	if ( increment ) {
 | |
| 		add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
 | |
| 		zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
 | |
| 	}
 | |
| 	else {
 | |
| 		if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
 | |
| 	}
 | |
| 	return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand formed by the concatenation of `zSig0' and `zSig1', and
 | |
| | returns the proper quadruple-precision floating-point value corresponding
 | |
| | to the abstract input.  This routine is just like `roundAndPackFloat128'
 | |
| | except that the input significand has fewer bits and does not have to be
 | |
| | normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | |
| | point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static inline float128
 | |
| 	normalizeRoundAndPackFloat128(
 | |
| 		flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
 | |
| {
 | |
| 	int8 shiftCount;
 | |
| 	bits64 zSig2;
 | |
| 
 | |
| 	if ( zSig0 == 0 ) {
 | |
| 		zSig0 = zSig1;
 | |
| 		zSig1 = 0;
 | |
| 		zExp -= 64;
 | |
| 	}
 | |
| 	shiftCount = countLeadingZeros64( zSig0 ) - 15;
 | |
| 	if ( 0 <= shiftCount ) {
 | |
| 		zSig2 = 0;
 | |
| 		shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
| 	}
 | |
| 	else {
 | |
| 		shift128ExtraRightJamming(
 | |
| 			zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
 | |
| 	}
 | |
| 	zExp -= shiftCount;
 | |
| 	return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
 | |
| 
 | |
| }
 | |
| #endif
 |