ack/mach/vax4/as/mach5.c
1990-01-17 16:05:00 +00:00

351 lines
7.9 KiB
C

/*
* (c) copyright 1990 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
#define RCSID5 "$Header$"
/*
* VAX-11 Machine dependent C declarations
*/
/* Opcode of branch on reversed condition. */
#define rev_cond_branch(opc) ((opc) ^ 1)
/* Process one operand. */
static
oprnd(p)
register struct operand *p;
{
int sm;
if (p->index_reg >= 0 && p->mode != DISPL) {
/* Indexed mode; emit */
emit1((INDEX_MODE << 4) | p->index_reg);
}
switch(p->mode) {
case REG_MODE:
if (p->size == -2 && p->index_reg < 0) {
serror("register mode not allowed here");
}
emit1((REG_MODE << 4) | p->reg);
break;
case REGDEF_MODE:
emit1((REGDEF_MODE << 4) | p->reg);
break;
case AI_MODE:
emit1((AI_MODE << 4) | p->reg);
break;
case AI_DEF_MODE:
emit1((AI_DEF_MODE << 4) | p->reg);
break;
case AD_MODE:
emit1((AD_MODE << 4) | p->reg);
break;
case DISPLL_MODE:
case DISPLL_DEF_MODE:
/* Three possible sizes: 1, 2, and 4 (and 0, but this is
not implemented). Therefore, we need two bits in the
optimize table.
*/
if (small(p->exp.typ == S_ABS && fitw(p->exp.val), 2)) {
/* We gained two bytes; see if we can gain another. */
if (small(fitb(p->exp.val), 1)) {
/* DISPLB_MODE or DISPLB_DEF_MODE */
emit1(((p->mode-4)<<4) | p->reg);
emit1((int)(p->exp.val));
}
else {
/* DISPLW_MODE or DISPLW_DEF_MODE */
emit1(((p->mode-2)<<4) | p->reg);
emit2((int)(p->exp.val));
}
}
else { /* We need 4 bytes here. */
small(0, 1); /* dummy call too keep bits in sync */
emit1((p->mode<<4) | p->reg);
#ifdef RELOCATION
RELOMOVE(relonami, p->relo);
newrelo(p->exp.typ, RELO4);
#endif
emit4((long) p->exp.val);
}
break;
case DISPL:
/* A displacement. The p->size field contains the size. */
p->exp.val -= (DOTVAL + p->size);
if ((pass == PASS_2) &&
(p->exp.val > 0) &&
((p->exp.typ & S_DOT) == 0)
) {
p->exp.val -= DOTGAIN;
}
if (p->size == 1) sm = fitb(p->exp.val);
else if (p->size == 2) sm = fitw(p->exp.val);
else sm = 1;
if (pass >= PASS_2 &&
((p->exp.typ & ~S_DOT) != DOTTYP || !sm)) {
serror("label too far");
}
if (p->size == 1) emit1((int)(p->exp.val));
else if (p->size == 2) emit2((int)(p->exp.val));
else {
#ifdef RELOCATION
RELOMOVE(relonami, p->relo);
newrelo(p->exp.typ, RELO4|RELPC);
#endif
emit4(p->exp.val);
}
break;
case IMM:
/* Immediate mode; either literal mode or auto-increment
of program counter.
*/
if (p->size < 0) {
serror("immediate mode not allowed here");
p->size = 4;
}
else if (p->size == 0) {
serror("this immediate mode is not implemented");
p->size = 4;
}
if (small(p->exp.typ == S_ABS && literal(p->exp.val), p->size)){
emit1((int)(p->exp.val));
}
else {
emit1((AI_MODE << 4) | PC);
RELOMOVE(relonami, p->relo);
switch(p->size) {
case 1:
#ifdef RELOCATION
newrelo(p->exp.typ, RELO1);
#endif
emit1((int)(p->exp.val));
break;
case 2:
#ifdef RELOCATION
newrelo(p->exp.typ, RELO2);
#endif
emit2((int)(p->exp.val));
break;
case 4:
#ifdef RELOCATION
newrelo(p->exp.typ, RELO4);
#endif
emit4(p->exp.val);
break;
default:
assert(0);
}
}
break;
case ABS:
/* Absolute mode (is auto-increment deferred with respect
to the program counter).
*/
emit1((AI_DEF_MODE << 4) | PC);
#ifdef RELOCATION
RELOMOVE(relonami, p->relo);
newrelo(p->exp.typ, RELO4);
#endif
emit4(p->exp.val);
break;
case REL:
case REL_DEF:
/* Relative or relative deferred is actually displacement
or displacement deferred, but relative to program counter.
*/
if (p->mode == REL) p->mode = DISPLL_MODE;
else p->mode = DISPLL_DEF_MODE;
p->reg = PC;
p->exp.val -= (DOTVAL + 2);
if ((pass == PASS_2)
&&
(p->exp.val > 0)
&&
((p->exp.typ & S_DOT) == 0)
) {
p->exp.val -= DOTGAIN;
}
/* Why test for exp.val - 1? Well, if we need a word for
the offset, we actually generate one byte more, and this
is reflected in the value of the program counter.
*/
sm = fitw(p->exp.val - 1);
if ((p->exp.typ & ~S_DOT) != DOTTYP) sm = 0;
if (small(sm, 2)) {
if (small(fitb(p->exp.val), 1)) {
/* DISPLB_MODE or DISPLB_DEF_MODE */
emit1(((p->mode-4)<<4) | p->reg);
emit1((int)(p->exp.val));
}
else {
/* DISPLW_MODE or DISPLW_DEF_MODE */
emit1(((p->mode-2)<<4) | p->reg);
/* exp.val - 1: see comment above */
emit2((int)(p->exp.val - 1));
}
}
else {
small(0, 1); /* dummy call */
emit1((p->mode<<4) | p->reg);
#ifdef RELOCATION
RELOMOVE(relonami, p->relo);
newrelo(p->exp.typ, RELO4|RELPC);
#endif
/* exp.val - 3: see comment above */
emit4((long) p->exp.val - 3);
}
break;
default:
assert(0);
}
}
/* Give an upper bound on the size of the operands */
static int
size_ops()
{
register struct operand *p = &opnd[0];
register int i;
register int sz = 0;
for (i = op_ind; i > 0; i--) {
if (p->index_reg >= 0 && p->mode != DISPL) {
sz++;
}
switch(p->mode) {
case REG_MODE:
case REGDEF_MODE:
case AI_MODE:
case AI_DEF_MODE:
case AD_MODE:
sz++;
break;
case DISPLL_MODE:
case DISPLL_DEF_MODE:
case REL:
case REL_DEF:
case IMM:
sz += 5;
break;
case DISPL:
sz += p->size;
break;
default:
assert(0);
}
p++;
}
return sz;
}
/* Branch with byte or word offset */
branch(opc, exp)
expr_t exp;
{
exp.val -= (DOTVAL + 2);
if ((pass == PASS_2) &&
(exp.val > 0) &&
((exp.typ & S_DOT) == 0)
) {
exp.val -= DOTGAIN;
}
/* For the reason of exp.val-1, see the comment at the generation
of the RELative addressing mode.
*/
if (pass >= PASS_2 &&
((exp.typ & ~S_DOT) != DOTTYP || ! fitw(exp.val - 1))) {
serror("label too far");
}
if (small(fitb(exp.val) && ((exp.typ & ~S_DOT) == DOTTYP), 1)) {
emit1(opc);
emit1((int) exp.val);
}
else {
emit1(opc|0x20);
emit2((int) (exp.val - 1));
}
}
/* Extended conditional branch instructions: if offset is too far,
they are replaced by a reversed conditional branch over a word-branch or
jump.
*/
ext_branch(opc, exp)
expr_t exp;
{
int sm;
int gain = opc == BRB ? 1 : 3;
valu_t val, d2 = DOTVAL + 2;
exp.val -= d2;
if ((pass == PASS_2) &&
(exp.val > 0) &&
((exp.typ & S_DOT) == 0)
) {
exp.val -= DOTGAIN;
}
/* We have not generated the operands yet and cannot do so
because we don't know the opcode yet and have to generate that
first. Therefore, we make a conservative guess of the size
of the operands in case the branch is backwards. If it is
forwards, the (sizes of the) operands do not matter.
*/
if (exp.val < 0) val = exp.val - size_ops();
else val = exp.val;
sm = fitw(val);
if ((exp.typ & ~S_DOT) != DOTTYP) sm = 0;
/* We gain three bytes if the offset fits in a word; for a
jump we also need an addressing mode byte.
*/
if (small(sm, 3)) {
/* Here we can gain 3 bytes if the extended branch is
conditional and the offset fits in a byte. Otherwise,
if the offset fits in a byte we gain 1 byte.
*/
if (small(fitb(val), gain)) {
emit1(opc);
operands();
/* Adjust exp.val for operand sizes. Keep into account
that we already generated the opcode(!). This
accounts for the "+ 1" instead of "+ 2".
*/
emit1((int) (exp.val - (DOTVAL + 1 - d2)));
}
else {
if (opc != BRB) {
emit1(rev_cond_branch(opc));
operands();
emit1(3);
}
emit1(BRW);
emit2((int) (exp.val - (DOTVAL + 2 - d2)));
}
}
else {
small(0, gain); /* dummy call to keep bittab in sync */
if (opc != BRB) {
emit1(rev_cond_branch(opc));
operands();
emit1(6);
}
emit1(JMP);
emit1((DISPLL_MODE << 4) | PC);
#ifdef RELOCATION
newrelo(exp.typ, RELO4|RELPC);
#endif
emit4(exp.val - (DOTVAL + 4 - d2));
}
}
/* Generate code for the operands */
operands()
{
register int i;
for (i = 0; i < op_ind; i++) {
oprnd(&opnd[i]);
}
}