ack/util/LLgen/src/compute.c
George Koehler 8bb395b147 LLgen: use size_t, reduce warnings, other small changes
Use C89 size_t for sizes from sizeof() or to malloc() or realloc().
Remove obsolete (unsigned) casts.  Sizes were unsigned int in
traditional C but are size_t in C89.

Silence some clang warnings.  Add the second pair of round brackets in
`while ((ff = ff->ff_next))` to silence -Wparentheses.  Change
`if (nc_first(...))/*nothing*/;` to `(void)nc_first(...);` to silence
-Wempty-body.  The code in compute.c nc_first() had the form
`if (x) if (y) s; else t;`.  The old indentation (before 10717cc)
suggests that the "else" belongs to the 2nd "if", so add braces like
`if (x) { if (y) s; else t; }` to silence -Wdangling-else.

Shuffle extern function declarations.  Add missing declaration for
LLparse().  Stop declaring RENAME(); it doesn't exist.  Move some
declarations from main.c to extern.h, so the C compiler may check that
the declarations are compatible with the function definitions.

Assume that standard C89 remove() is available and doesn't need the
UNLINK() wrapper.

In lib/incl, don't need to include <stdio.h> nor <stdlib.h> to use
assert().

Remove alloc.h.  If you don't clean your build, then an outdated
BUILDDIR/obj/util/LLgen/headers/alloc.h will survive but should not
cause harm, because nothing includes it.  Don't need to remove alloc.h
from util/LLgen/distr.sh, because it isn't there.

Run the bootstrap to rebuild LLgen.c, Lpars.c, tokens.c.
2019-10-22 15:32:23 -04:00

1339 lines
24 KiB
C

/* Copyright (c) 1991 by the Vrije Universiteit, Amsterdam, the Netherlands.
* For full copyright and restrictions on use see the file COPYING in the top
* level of the LLgen tree.
*/
/*
* L L G E N
*
* An Extended LL(1) Parser Generator
*
* Author : Ceriel J.H. Jacobs
*/
/*
* compute.c
* Defines routines to compute FIRST, FOLLOW etc.
* Also checks the continuation grammar from the specified grammar.
*/
# include <stdlib.h>
# include <stdio.h>
# include "types.h"
# include "extern.h"
# include "sets.h"
# include "assert.h"
# include "io.h"
# ifndef NORCSID
static string rcsid = "$Id$";
# endif
p_set get_set();
typedef struct lngth
{
/* Structure used to compute the shortest possible
* length of a terminal production of a rule.
* In case of a tie, the second field is used.
*/
int cnt;
int val;
} t_length, *p_length;
/* Defined in this file : */
void do_compute(void);
STATIC void createsets(void);
STATIC void walk(p_set u, register p_gram p);
STATIC void co_trans(int (*fc)());
STATIC int nempty(register p_nont p);
int empty(register p_gram p);
STATIC int nfirst(register p_nont p);
#ifdef NON_CORRECTING
STATIC int nc_nfirst(register p_nont p);
#endif
STATIC int first(p_set setp, register p_gram p, int flag);
#ifdef NON_CORRECTING
STATIC int nc_first(p_set setp,register p_gram p,int flag);
#endif
STATIC int nfollow(register p_nont p);
STATIC int follow(p_set setp, register p_gram p);
#ifdef NON_CORRECTING
STATIC int nc_nfollow(register p_nont p);
#endif
STATIC void co_dirsymb(p_set setp, register p_gram p);
STATIC void co_others(p_gram p);
STATIC int ncomplength(p_nont p);
STATIC void do_lengthcomp(void);
STATIC void complength(register p_gram p, p_length le);
STATIC void add(register p_length a, int c, int v);
STATIC int compare(p_length a, p_length b);
STATIC void setdefaults(register p_gram p);
STATIC void do_contains(register p_nont n);
STATIC void contains(register p_gram p, register p_set set);
STATIC int nsafes(register p_nont p);
STATIC int do_safes(register p_gram p, int safe, register int *ch);
int t_safety(int rep, int count, int persistent, int safety);
int t_after(int rep, int count, int outsafety);
/*
* Does all the work, by calling other routines (divide and conquer)
*/
void do_compute(void)
{
register p_nont p;
register p_start st;
createsets();
co_trans(nempty); /* Which nonterminals produce empty? */
co_trans(nfirst); /* Computes first sets */
/*
* Compute FOLLOW sets.
* First put EOFILE in the follow set of the start nonterminals.
*/
for (st = start; st; st = st->ff_next)
{
p = &nonterms[st->ff_nont];
PUTIN(p->n_follow, 0);
}
co_trans(nfollow);
/*
* Compute the sets which determine which alternative to choose
* in case of a choice
*/
for (p = nonterms; p < maxnt; p++)
{
co_dirsymb(p->n_follow, p->n_rule);
}
/*
* Compute the minimum length of productions of nonterminals,
* and then determine the default choices
*/
do_lengthcomp();
/*
* Compute the contains sets
*/
for (p = nonterms; p < maxnt; p++)
do_contains(p);
for (p = nonterms; p < maxnt; p++)
contains(p->n_rule, (p_set) 0);
/*
* Compute the safety of each nonterminal and term.
* The safety gives an answer to the question whether a scan is done,
* and how it should be handled.
*/
for (p = nonterms; p < maxnt; p++)
{
/*
* Don't know anything yet
*/
setntsafe(p, NOSAFETY);
setntout(p, NOSAFETY);
}
for (st = start; st; st = st->ff_next)
{
/*
* But start symbols are called with lookahead done
*/
p = &nonterms[st->ff_nont];
setntsafe(p, SCANDONE);
}
co_trans(nsafes);
#ifdef NON_CORRECTING
if (subpars_sim)
{
int s;
/* compute the union of the first sets of all start symbols
Used to compute the nc-first-sets when -s option is given */
start_firsts = get_set();
for (st = start; st; st = st->ff_next)
{
s = setunion(start_firsts, (&nonterms[st->ff_nont])->n_first);
}
}
if (non_corr)
{
/* compute the non_corr first sets for all nonterminals and terms */
co_trans(nc_nfirst);
for (st = start; st; st = st->ff_next)
{
p = &nonterms[st->ff_nont];
PUTIN(p->n_nc_follow,0);
}
co_trans(nc_nfollow);
}
#endif
# ifndef NDEBUG
if (debug)
{
fputs("Safeties:\n", stderr);
for (p = nonterms; p < maxnt; p++)
{
fprintf(stderr, "%s\t%d\t%d\n", p->n_name, getntsafe(p),
getntout(p));
}
}
# endif
}
/*
* Allocate space for the sets. Also determine which files use
* which nonterminals, and determine which nonterminals can be
* made static.
*/STATIC void createsets(void)
{
register p_nont p;
register p_file f;
register p_start st;
register int i;
int n = NINTS(NBYTES(nnonterms));
p_mem alloc();
for (f = files; f < maxfiles; f++)
{
register p_set s;
f->f_used = s = (p_set) alloc(n * sizeof(*(f->f_used)));
for (i = n; i; i--)
*s++ = 0;
for (i = f->f_nonterminals; i != -1; i = p->n_next)
{
p = &nonterms[i];
p->n_flags |= GENSTATIC;
p->n_first = get_set();
#ifdef NON_CORRECTING
p->n_nc_first = get_set();
p->n_nc_follow = get_set();
#endif
p->n_follow = get_set();
walk(f->f_used, p->n_rule);
}
}
for (f = files; f < maxfiles; f++)
{
for (i = f->f_nonterminals; i != -1; i = p->n_next)
{
register p_file f2;
p = &nonterms[i];
for (f2 = files; f2 < maxfiles; f2++)
{
if (f2 != f && IN(f2->f_used, i))
{
p->n_flags &= ~GENSTATIC;
}
}
}
}
for (st = start; st; st = st->ff_next)
{
nonterms[st->ff_nont].n_flags &= ~GENSTATIC;
}
}
/*
* Walk through the grammar rule p, allocating sets
*/
STATIC void walk(p_set u, register p_gram p)
{
for (;;)
{
switch (g_gettype(p))
{
case TERM:
{
register p_term q;
q = g_getterm(p);
q->t_first = get_set();
#ifdef NON_CORRECTING
q->t_nc_first = get_set();
q->t_nc_follow = get_set();
#endif
q->t_follow = get_set();
walk(u, q->t_rule);
break;
}
case ALTERNATION:
{
register p_link l;
l = g_getlink(p);
l->l_symbs = get_set();
#ifdef NON_CORRECTING
l->l_nc_symbs = get_set();
#endif
l->l_others = get_set();
walk(u, l->l_rule);
break;
}
case NONTERM:
{
register int i = g_getcont(p);
PUTIN(u, i);
break;
}
case EORULE:
return;
}
p++;
}
}
STATIC void co_trans(int (*fc)())
{
register p_nont p;
register int change;
do
{
change = 0;
for (p = nonterms; p < maxnt; p++)
{
if ((*fc)(p))
change = 1;
}
} while (change);
}
STATIC int nempty(register p_nont p)
{
if (!(p->n_flags & EMPTY) && empty(p->n_rule))
{
p->n_flags |= EMPTY;
return 1;
}
return 0;
}
/*
* Does the rule pointed to by p produce empty ?
*/
int empty(register p_gram p)
{
for (;;)
{
switch (g_gettype(p))
{
case EORULE:
return 1;
case TERM:
{
register p_term q;
q = g_getterm(p);
if (r_getkind(q) == STAR || r_getkind(q) == OPT || empty(q->t_rule))
break;
return 0;
}
case ALTERNATION:
if (empty(g_getlink(p)->l_rule))
{
return 1;
}
if (g_gettype(p+1) == EORULE)
return 0;
break;
case NONTERM:
if (nonterms[g_getcont(p)].n_flags & EMPTY)
{
break;
}
/* Fall through */
case LITERAL:
case TERMINAL:
return 0;
}
p++;
}
}
STATIC int nfirst(register p_nont p)
{
return first(p->n_first, p->n_rule, 0);
}
#ifdef NON_CORRECTING
STATIC int nc_nfirst(register p_nont p)
{
return nc_first(p->n_nc_first, p->n_rule, 0);
}
#endif
/*
* Compute the FIRST set of rule p.
* If flag = 0, also the first sets for terms and alternations in
* the rule p are computed.
* The FIRST set is put in setp.
* return 1 if the set refered to by "setp" changed
*/
STATIC int first(p_set setp, register p_gram p, int flag)
{
register int s; /* Will gather return value */
int noenter;/* when set, unables entering of elements into
* setp. This is necessary to walk through the
* rest of rule p.
*/
s = 0;
noenter = 0;
for (;;)
{
switch (g_gettype(p))
{
case EORULE:
return s;
case TERM:
{
register p_term q;
q = g_getterm(p);
if (flag == 0)
{
if (first(q->t_first, q->t_rule, 0))/*nothing*/
;
}
if (!noenter)
s |= setunion(setp, q->t_first);
p++;
if (r_getkind(q) == STAR || r_getkind(q) == OPT || empty(q->t_rule))
continue;
break;
}
case ALTERNATION:
{
register p_link l;
l = g_getlink(p);
if (flag == 0)
{
if (first(l->l_symbs, l->l_rule, 0))/*nothing*/
;
}
if (noenter == 0)
{
s |= setunion(setp, l->l_symbs);
}
if (g_gettype(p+1) == EORULE)
return s;
}
/* Fall Through */
case ACTION:
p++;
continue;
case LITERAL:
case TERMINAL:
if ((noenter == 0) && !IN(setp,g_getcont(p)))
{
s = 1;
PUTIN(setp, g_getcont(p));
}
p++;
break;
case NONTERM:
{
register p_nont n;
n = &nonterms[g_getcont(p)];
if (noenter == 0)
{
s |= setunion(setp, n->n_first);
if (ntneeded)
NTPUTIN(setp, g_getcont(p));
}
p++;
if (n->n_flags & EMPTY)
continue;
break;
}
}
if (flag == 0)
{
noenter = 1;
continue;
}
return s;
}
}
#ifdef NON_CORRECTING
/*
* Compute the non_corr FIRST set of rule p.
* If flag = 0, also the non_corr first sets for terms and
* alternations in the rule p are computed.
* The non_corr FIRST set is put in setp.
* return 1 if the set refered to by "setp" changed
* If the -s flag was given, the union of the first-sets of all
* start symbols is used whenever an action occurs. Else, only the
* first-sets of startsynbols in the %substart are used
*/
STATIC int nc_first(p_set setp,register p_gram p,int flag)
{
register int s; /* Will gather return value */
int noenter;/* when set, unables entering of elements into
* setp. This is necessary to walk through the
* rest of rule p.
*/
s = 0;
noenter = 0;
for (;;)
{
switch (g_gettype(p))
{
case EORULE :
return s;
case TERM :
{
register p_term q;
q = g_getterm(p);
if (flag == 0)
(void)nc_first(q->t_nc_first,q->t_rule,0);
if (!noenter) s |= setunion(setp,q->t_nc_first);
p++;
if (r_getkind(q) == STAR ||
r_getkind(q) == OPT ||
empty(q->t_rule)) continue;
break;}
case ALTERNATION :
{
register p_link l;
l = g_getlink(p);
if (flag == 0)
(void)nc_first(l->l_nc_symbs,l->l_rule,0);
if (noenter == 0)
{
s |= setunion(setp,l->l_nc_symbs);
}
if (g_gettype(p+1) == EORULE) return s;
}
p++;
continue;
case ACTION :
{
register p_start subp;
if (!noenter)
{
if (subpars_sim)
s |= setunion(setp, start_firsts);
else
{
for (subp = g_getsubparse(p); subp;
subp = subp->ff_next)
s |= setunion(setp, (&nonterms[subp->ff_nont])->n_nc_first);
}
}
p++;
continue;
}
case LITERAL :
case TERMINAL :
if (g_getcont(p) == g_getcont(illegal_gram))
{
/* Ignore for this set. */
p++;
continue;
}
if ((noenter == 0) && !IN(setp,g_getcont(p)))
{
s = 1;
PUTIN(setp,g_getcont(p));
}
p++;
break;
case NONTERM :
{
register p_nont n;
n = &nonterms[g_getcont(p)];
if (noenter == 0)
{
s |= setunion(setp,n->n_nc_first);
if (ntneeded) NTPUTIN(setp,g_getcont(p));
}
p++;
if (n->n_flags & EMPTY) continue;
break;}
}
if (flag == 0)
{
noenter = 1;
continue;
}
return s;
}
}
#endif
STATIC int nfollow(register p_nont p)
{
return follow(p->n_follow, p->n_rule);
}
/*
* setp is the follow set for the rule p.
* Compute the follow sets in the rule p from this set.
* Return 1 if a follow set of a nonterminal changed.
*/
STATIC int follow(p_set setp, register p_gram p)
{
register int s; /* Will gather return value */
s = 0;
for (;;)
{
switch (g_gettype(p))
{
case EORULE:
return s;
case TERM:
{
register p_term q;
q = g_getterm(p);
if (empty(p + 1))
{
/*
* If what follows the term can be empty,
* everything that can follow the whole
* rule can also follow the term
*/
s |= setunion(q->t_follow, setp);
}
/*
* Everything that can start the rest of the rule
* can follow the term
*/
s |= first(q->t_follow, p + 1, 1);
if (r_getkind(q) == STAR || r_getkind(q) == PLUS || r_getnum(q))
{
/*
* If the term involves a repetition
* of possibly more than one,
* everything that can start the term
* can also follow it.
*/
s |= follow(q->t_first, q->t_rule);
}
/*
* Now propagate the set computed sofar
*/
s |= follow(q->t_follow, q->t_rule);
break;
}
case ALTERNATION:
/*
* Just propagate setp
*/
s |= follow(setp, g_getlink(p)->l_rule);
break;
case NONTERM:
{
register p_nont n;
n = &nonterms[g_getcont(p)];
s |= first(n->n_follow, p + 1, 1);
if (empty(p + 1))
{
/*
* If the rest of p can produce empty,
* everything that follows p can follow
* the nonterminal
*/
s |= setunion(n->n_follow, setp);
}
break;
}
}
p++;
}
return 0;
}
#ifdef NON_CORRECTING
STATIC int nc_nfollow(register p_nont p)
{
return follow(p->n_nc_follow, p->n_rule);
}
STATIC int nc_follow(p_set setp, register p_gram p)
{
/*
* setp is the follow set for the rule p.
* Compute the follow sets in the rule p from this set.
* Return 1 if a follow set of a nonterminal changed.
*/
register int s; /* Will gather return value */
s = 0;
for (;;)
{
switch (g_gettype(p))
{
case EORULE :
return s;
case TERM :
{
register p_term q;
q = g_getterm(p);
if (empty(p+1))
{
/*
* If what follows the term can be empty,
* everything that can follow the whole
* rule can also follow the term
*/
s |= setunion(q->t_nc_follow,setp);
}
/*
* Everything that can start the rest of the rule
* can follow the term
*/
s |= nc_first(q->t_nc_follow,p+1,1);
if (r_getkind(q) == STAR ||
r_getkind(q) == PLUS ||
r_getnum(q) )
{
/*
* If the term involves a repetition
* of possibly more than one,
* everything that can start the term
* can also follow it.
*/
s |= nc_follow(q->t_nc_first,q->t_rule);
}
/*
* Now propagate the set computed sofar
*/
s |= nc_follow(q->t_nc_follow, q->t_rule);
break;}
case ALTERNATION :
/*
* Just propagate setp
*/
s |= nc_follow(setp,g_getlink(p)->l_rule);
break;
case NONTERM :
{
register p_nont n;
n = &nonterms[g_getcont(p)];
s |= nc_first(n->n_nc_follow,p+1,1);
if (empty(p+1))
{
/*
* If the rest of p can produce empty,
* everything that follows p can follow
* the nonterminal
*/
s |= setunion(n->n_nc_follow,setp);
}
break;}
}
p++;
}
return 0;
}
#endif
STATIC void co_dirsymb(p_set setp, register p_gram p)
{
/*
* Walk the rule p, doing the work for alternations
*/
register p_gram s = 0;
for (;;)
{
switch (g_gettype(p))
{
case EORULE:
return;
case TERM:
{
register p_term q;
q = g_getterm(p);
co_dirsymb(q->t_follow, q->t_rule);
break;
}
case ALTERNATION:
{
register p_link l;
/*
* Save first alternative
*/
if (!s)
s = p;
l = g_getlink(p);
co_dirsymb(setp, l->l_rule);
if (empty(l->l_rule))
{
/*
* If the rule can produce empty, everything
* that follows it can also start it
*/
setunion(l->l_symbs, setp);
}
if (g_gettype(p+1) == EORULE)
{
/*
* Every alternation is implemented as a
* choice between two alternatives :
* this one or one of the following.
* The l_others set will contain the starters
* of the other alternatives
*/
co_others(s);
return;
}
}
}
p++;
}
}
STATIC void co_others(p_gram p)
{
/*
* compute the l_others-sets for the list of alternatives
* indicated by p
*/
register p_link l1, l2;
l1 = g_getlink(p);
p++;
l2 = g_getlink(p);
setunion(l1->l_others, l2->l_symbs);
if (g_gettype(p+1) != EORULE)
{
/*
* First compute l2->l_others
*/
co_others(p);
/*
* and then l1->l_others
*/
setunion(l1->l_others, l2->l_others);
}
}
static p_length length;
# define INFINITY 32767
STATIC int ncomplength(p_nont p)
{
register p_length pl = &length[p - nonterms];
int x = pl->cnt;
pl->cnt = -1;
complength(p->n_rule, pl);
return pl->cnt < INFINITY && x == INFINITY;
}
/*
* Compute the minimum length of a terminal production for each
* nonterminal.
* This length consists of two fields: the number of terminals,
* and a number that is composed of
* - the number of this alternative
* - a crude measure of the number of terms and nonterminals in the
* production of this shortest string.
*/
STATIC void do_lengthcomp(void)
{
register p_length pl;
register p_nont p;
p_mem alloc();
length = (p_length) alloc(nnonterms * sizeof(*length));
for (pl = &length[nnonterms - 1]; pl >= length; pl--)
{
pl->val = pl->cnt = INFINITY;
}
co_trans(ncomplength);
pl = length;
for (p = nonterms; p < maxnt; p++, pl++)
{
if (pl->cnt == INFINITY)
{
p->n_flags |= RECURSIVE;
}
setdefaults(p->n_rule);
}
free((p_mem) length);
}
STATIC void complength(register p_gram p, p_length le)
{
/*
* Walk grammar rule p, computing minimum lengths
*/
register p_link l;
register p_term q;
t_length i;
t_length X;
int cnt = 0;
X.cnt = 0;
X.val = 0;
for (;;)
{
switch (g_gettype(p))
{
case LITERAL:
case TERMINAL:
#ifdef NON_CORRECTING
if (g_getcont(p) == g_getcont(illegal_gram))
{
add(&X, INFINITY, 0);
break;
}
#endif
add(&X, 1, 0);
break;
case ALTERNATION:
X.cnt = INFINITY;
X.val = INFINITY;
while (g_gettype(p) != EORULE)
{
cnt++;
l = g_getlink(p);
p++;
complength(l->l_rule, &i);
i.val += cnt;
if (l->l_flag & DEF)
{
X = i;
break;
}
if (compare(&i, &X) < 0)
{
X = i;
}
}
/* Fall through */
case EORULE:
le->cnt = X.cnt;
le->val = X.val;
return;
case TERM:
{
register int rep;
q = g_getterm(p);
rep = r_getkind(q);
X.val += 1;
if ((q->t_flags & PERSISTENT) || rep == FIXED || rep == PLUS)
{
complength(q->t_rule, &i);
add(&X, i.cnt, i.val);
if (rep == FIXED && r_getnum(q) > 0)
{
for (rep = r_getnum(q) - 1; rep > 0; rep--)
{
add(&X, i.cnt, i.val);
}
}
}
break;
}
case NONTERM:
{
int nn = g_getcont(p);
register p_length pl = &length[nn];
int x = pl->cnt;
if (x == INFINITY)
{
pl->cnt = -1;
complength(nonterms[nn].n_rule, pl);
x = pl->cnt;
}
else if (x == -1)
x = INFINITY;
add(&X, x, pl->val);
X.val += 1;
}
}
p++;
}
}
STATIC void add(register p_length a, int c, int v)
{
if (a->cnt == INFINITY || c == INFINITY)
{
a->cnt = INFINITY;
return;
}
a->val += v;
a->cnt += c;
}
STATIC int compare(p_length a, p_length b)
{
if (a->cnt != b->cnt)
return a->cnt - b->cnt;
return a->val - b->val;
}
STATIC void setdefaults(register p_gram p)
{
for (;;)
{
switch (g_gettype(p))
{
case EORULE:
return;
case TERM:
setdefaults(g_getterm(p)->t_rule);
break;
case ALTERNATION:
{
register p_link l, l1;
int temp = 0, temp1, cnt = 0;
t_length count, i;
count.cnt = INFINITY;
count.val = INFINITY;
l1 = g_getlink(p);
do
{
cnt++;
l = g_getlink(p);
p++;
complength(l->l_rule, &i);
i.val += cnt;
if (l->l_flag & DEF)
temp = 1;
temp1 = compare(&i, &count);
if (temp1 < 0 || (temp1 == 0 && l1->l_flag & AVOIDING))
{
l1 = l;
count = i;
}
setdefaults(l->l_rule);
} while (g_gettype(p) != EORULE);
if (!temp)
{
/* No user specified default */
l1->l_flag |= DEF;
}
return;
}
}
p++;
}
}
STATIC void do_contains(register p_nont n)
{
/*
* Compute the total set of symbols that nonterminal n can
* produce
*/
if (n->n_contains == 0)
{
n->n_contains = get_set();
contains(n->n_rule, n->n_contains);
/*
* If the rule can produce empty, delete all symbols that
* can follow the rule as well as be in the rule.
* This is needed because the contains-set may only contain
* symbols that are guaranteed to be eaten by the rule!
* Otherwise, the generated parser may loop forever
*/
if (n->n_flags & EMPTY)
{
setminus(n->n_contains, n->n_follow);
}
/*
* But the symbols that can start the rule are always
* eaten
*/
setunion(n->n_contains, n->n_first);
}
}
STATIC void contains(register p_gram p, register p_set set)
{
/*
* Does the real computation of the contains-sets
*/
for (;;)
{
switch (g_gettype(p))
{
case EORULE:
return;
case TERM:
{
register p_term q;
int rep;
q = g_getterm(p);
rep = r_getkind(q);
if ((q->t_flags & PERSISTENT) || rep == PLUS || rep == FIXED)
{
/*
* In these cases, the term belongs to the
* continuation grammar.
* Otherwise, q->t_contains is just
* q->t_first
*/
if (!q->t_contains)
{
q->t_contains = get_set();
}
contains(q->t_rule, q->t_contains);
if (rep != FIXED || empty(q->t_rule))
{
setminus(q->t_contains, q->t_follow);
}
setunion(q->t_contains, q->t_first);
}
else
{
contains(q->t_rule, (p_set) 0);
q->t_contains = q->t_first;
}
if (set)
setunion(set, q->t_contains);
break;
}
case NONTERM:
{
register p_nont n;
n = &nonterms[g_getcont(p)];
do_contains(n);
if (set)
{
setunion(set, n->n_contains);
if (ntneeded)
NTPUTIN(set, g_getcont(p));
}
break;
}
case ALTERNATION:
{
register p_link l;
l = g_getlink(p);
contains(l->l_rule, (l->l_flag & DEF) ? set : (p_set) 0);
break;
}
case LITERAL:
case TERMINAL:
{
register int hulp;
if (set)
{
hulp = g_getcont(p);
assert(hulp < ntokens);
PUTIN(set, hulp);
}
}
}
p++;
}
}
STATIC int nsafes(register p_nont p)
{
int ch;
register int i;
ch = 0;
i = getntsafe(p);
if (i != NOSAFETY)
{
i = do_safes(p->n_rule, i, &ch);
if (i < SCANDONE)
i = SCANDONE;
/* After a nonterminal, we only know whether a scan was done
or not
*/
if (getntout(p) != i)
{
ch = 1;
setntout(p, i);
}
}
return ch;
}
STATIC int do_safes(register p_gram p, int safe, register int *ch)
{
/*
* Walk the grammar rule, doing the computation described in the
* comment of the procedure above this one.
*/
int retval;
for (;;)
{
switch (g_gettype(p))
{
case ACTION:
p++;
continue;
case LITERAL:
case TERMINAL:
safe = NOSCANDONE;
break;
case TERM:
{
register p_term q;
int i, rep;
q = g_getterm(p);
i = r_getnum(q);
rep = r_getkind(q);
retval = do_safes(q->t_rule,
t_safety(rep, i, q->t_flags & PERSISTENT, safe), ch);
settout(q, retval);
safe = t_after(rep, i, retval);
break;
}
case ALTERNATION:
{
register p_link l;
register int i;
retval = -1;
while (g_gettype(p) == ALTERNATION)
{
l = g_getlink(p);
p++;
if (safe > SAFE && (l->l_flag & DEF))
{
i = do_safes(l->l_rule, SAFESCANDONE, ch);
}
else
i = do_safes(l->l_rule, SAFE, ch);
if (retval == -1)
retval = i;
else if (i != retval)
{
if (i == NOSCANDONE || retval == NOSCANDONE)
{
retval = SCANDONE;
}
else if (i > retval)
retval = i;
}
}
return retval;
}
case NONTERM:
{
register p_nont n;
register int nsafe, osafe;
n = &nonterms[g_getcont(p)];
nsafe = getntsafe(n);
osafe = safe;
safe = getntout(n);
if (safe == NOSAFETY)
safe = SCANDONE;
if (osafe == nsafe)
break;
if (nsafe == NOSAFETY)
{
*ch = 1;
setntsafe(n, osafe);
break;
}
if (osafe == NOSCANDONE || nsafe == NOSCANDONE)
{
if (nsafe != SCANDONE)
{
*ch = 1;
setntsafe(n, SCANDONE);
}
break;
}
if (osafe > nsafe)
{
setntsafe(n, osafe);
*ch = 1;
}
break;
}
case EORULE:
return safe;
}
p++;
}
}
int t_safety(int rep, int count, int persistent, int safety)
{
if (safety == NOSCANDONE)
safety = SCANDONE;
switch (rep)
{
default:
assert(0);
case OPT:
if (!persistent || safety < SAFESCANDONE)
return SAFE;
return SAFESCANDONE;
case STAR:
if (persistent)
return SAFESCANDONE;
return SAFE;
case PLUS:
if (persistent)
{
if (safety > SAFESCANDONE)
return safety;
return SAFESCANDONE;
}
return safety;
case FIXED:
if (!count)
return safety;
return SCANDONE;
}
/* NOTREACHED */
}
int t_after(int rep, int count, int outsafety)
{
if (count == 0 && (rep == STAR || rep == PLUS))
{
return SAFESCANDONE;
}
if (rep != FIXED)
{
if (outsafety <= SAFESCANDONE)
return SAFESCANDONE;
return SCANDONE;
}
return outsafety;
}